o
@-‘T/’ Proceedings of the International Multiconference on ISSN 1896-7094
¥ Computer Science and Information Technology pp. 13-25 © 2007 PIPS

A Common Base for Building Secure Mobile Agent
Middleware Systems

Guido J. van 't NoordendeBenno J. Overeindé&f, Reinier J. Timmer,
Frances M. T. Brazier, and Andrew S. Tanenbaum

Department of Computer Science, Vrije Universiteit Amdgam,
Amsterdam, The Netherlands
{guido, bjo, rjtimrer,frances, ast} @s. vu. nl

Abstract. The Agent Operating System (AOS) provides the basic funatio
ity needed for secure and reliable mobile agent platformappsrt for secure
communication, secure agent storage and migration, ansnaliprimitives for

agent life-cycle management. Designed as a layer betweah dperating sys-
tems and higher level agent platform middleware, it sugpioteroperability be-
tween agent platforms and between different implementatd AOS itself. AOS
has been tested on interoperability, both with regard fewifit higher-layer mid-
dleware platforms and interoperability between two impatations of AOS in
C++ and Java.

1 Introduction

Multi-agent system applications often rely on agent platf® (agent middleware sys-
tems) for agent life-cycle management, communicationsipbsmigration, and secu-
rity [7, 1, 8]. Most (mobile) multi-agent systems to date arenolithic systems, where
all functionality is integrated in a single code-base, mft@plemented in Java. Even
if systems have a more or less modular design (e.g., JADEtHgy are generally not
designed for interoperability with other systems, or gaadilow for integration of com-
ponents written in different languages. Some solutionsspatifications for interop-
erability exist (e.g., FIPA), however these specificatiofien define only higher-level
functionality such as interagent communication protocatal do not define low-level
protocols for agent migration or setting up (secure) cotioes between middleware
systems.

The system described in this paper, called Agent Operatystes (AOS), is in-
tended to facilitate designing mobile agent middlewaréssys in a more modular way,
by providing a common, language-neutral base for layerindtiragent middleware
systems upon. AOS offers a well-defined interface that piesiprimitives for secure
packaging and migration of agents written in various lamgsaand for the establish-
ment of secure channels between different mobile agentlevidde components.

This paper proposes a multilevel architecture for agenttaidare: a common min-
imal AOS layer, and higher level middleware layers for @atf specific functionality.

* Current address: Informatics Institute, University of Aerdam, The Netherlands
** Current address: NLnet Labs, Amsterdam, The Netherlands

13

14 Guido J. van 't Noordende et al.

The common minimal base, the “kernel” to higher level midgiee systems, is the
main focus of this paper. The requirements and design ceraidns for the AOS ker-
nel are identified in Section 2. Section 3 presents the actital design of AOS and
evaluates the design with respect to the requirementsioBettevaluates two imple-
mentations of the AOS kernel: one in C and one in Java. Relatek is discussed in
Section 5, and the paper concludes with a summary in Section 6

2 Design Requirements and Motivation

Most mobile agent middleware systems are designed to sugpecific agent models
and programming environments. These systems share faatitio AOS has been de-
signed to provide a minimal common base which provides thésed functionality to
mobile agent middleware systems. By design, AOS suppaksdperability, facilitat-
ing open and extensible design of agent middleware, andliagahteraction and/or
integration with (existing) middleware services.

The commonalities found between agent middleware systam$&e broadly clas-
sified as: (i) mobile agent (code and data) storage and toain$i) primitives for agent
life-cycle management, and (iii) secure communicatiomien middleware processes
(irrespective of what is actually stored in an agent or bemgmunicated). In addition,
all current multi-agent systems require security mechnasihat allow for, e.g., authen-
tication and authorization of remote processes, and fegiitly verification of migrated
agents and content.

2.1 Requirements

To realize a common base for implementing secure and modhdaile agent middle-
ware, the following requirements for the AOS kernel are agfin

— AOS should be a common layer for a broad range of agent midd&systems.

— The AOS design and specification should be language andtoyesgistem neutral,
so that it can be implemented in any programming languagepanigd to any
operating system. All these implementations should betalilgeroperate.

— AOS should be minimal, in that it should only provides the imial set of primi-
tives required for building (secure) mobile agent middlewdinimality ensures
that the AOS code base becomes manageable and can be imgdrimea robust
and secure way. This implies that some mechanisms have tmfiernented by
the agent middleware itself, which is inherent to the ided such mechanisms are
middleware specific. In short, AOS should be “lean and meand], provide only
the basics needed for implementing (secure) mobile ageaidleware.

— AOS should be reasonably efficient, within the expectedgeerdnce boundaries
of (secure) agent middleware. In particular, it should rdat aignificant overhead
compared to a distributed mobile agent system written froratsh, assuming that
such a system is built with comparable (security) requireizn mind.

— AOS should not impose design limitations or a specific modehe mobile agent
middleware designer. For example, it should not requirgldségner to adopt a spe-
cific deployment or security model (e.g., using a specifidipidey infrastructure).

A Common Base for Building Secure Mobile Agent Middlewarest®yns 15

— The AOS should be a stand-alone component which can be cenaild used
without administrative privileges on a hosting machine.

— AOS should be usable by different mobile agent middlewasgesys concurrently,
although stand-alone (non-shared) usage should also kibjeos

2.2 Motivation of Design Requirements

The requirements outlined above have several importaniidatipns for the design
and implementation of a minimal kernel. This section démsgithe rationale for the
requirements and discusses some of the consequences.

Making AOS language-neutral is an important requirementrtavide a support
layer for agent middleware. Most current agent middlewgstesns have been imple-
mented in Java, and consequently support Java as a progngrnanguage for agent
development. However, this may not always be the most oBvjmagramming lan-
guage for agent development; C++ or Python may be prefefabkhe task at hand,
maybe for code reusability, for interoperability, or forfzemance reasons.

The minimality and reasonable efficiency constraints hey@ications for interac-
tions with the underlying system and management of ressuf€@S only support local
interactions, i.e., local processing accessing localness, which should not block or
interfere with other (local) operations. The only non-locéeraction is communica-
tion. Restricting AOS to managing local resources onlyj@vhaving the kernel wait
for remote services to answer before it can complete a tagkalglement tasks spanning
more than one machine are the responsibility of the higkestimiddleware systems.

Security is very important in mobile agent systems, botimftbe perspective of
the agent as well as of the host. As mobile agents move togiotedsts (which may
not always be trusted or trustworthy), their data and coarilshbe protected from
tampering. Mechanisms must be provided for timely agenpting detection, and for
authentication of remote agent middleware (see Section 3.2

From a host’s perspective, mechanisms are needed to photststfrom malicious
or erroneously programmed agents. Sandboxing (for irkegdrexecutables) or jail-
ing (for binary executables) [9], two examples of mechasiginat allow for protection
of a host from malicious agents, require interaction witlphieir-level middleware sys-
tems in which life-cycle managementis regulated. AOS mtesimechanisms for agent
code and data management, which provide the basis for ingpitng agent life-cycle
management in the middleware layer.

The requirement that AOS should be usable by multiple maiglent systems at
the same time allows for AOS to provide an access point toiptelimobile agent
middleware systems behind a firewall, among other thingse. itmber of TCP ports
for incoming connections should therefore be minimal. 8tggone AOS instance on a
host requires an authentication mechanism for agent middéeto allow separation of
operation. This mechanism is discussed in Section 3.

3 Architecture of the AOS Kernel

This section discusses the architecture and design of ti& ksnel.

16 Guido J. van 't Noordende et al.

3.1 Architectural Model of AOS

The intended use of AOS is to provide a common base to a rangpeaificMobile
Agent Middleware (MAM}¥ystems. This common base can be seen as a kernel com-
ponent in a layered middleware system design. Higher-kyeht middleware systems
use AOS for agent code and state management, agent migratidrtcommunication.
Higher-level MAMs extend the basic common AOS layer withraggaiddleware spe-

cific components and possibly one or more services, e.gadent life-cycle manage-
ment, middleware management, and agent naming and locsgiwites. The general
architectural model is shown in Fig. 1.

2)

Agent Agent gent
MAM agent MAM agent MAM
server server service

I I I
Agent Operating System (AOS)
I
Operating System (OS)

\
(network)

Fig. 1. Example of a layered agent middleware architecture usin@.Athis example system
consists of two agent server processes and one servicegagming service) running on the
same machine. MAM processes communicate with other locaraote MAM components us-
ing AOS. Agents communicate with their runtime environm@ng., agent server), and do not
normally access AOS directly.

AOS provides a means for middleware processes to securtigraticate services
and other MAM components in a system, to communicate witedttwmponents and
services, and to migrate agents to other locations in a s@gay. AOS has two external
entries for receiving agents and for incoming connectiomaiddleware processes that
use AOS. How authentication, communication, and agenspmam are implemented
internally in AOS is described later in this section.

MAM components (distinct processes from an architectusadtof view, see Fig. 1),
are responsible for the agent runtime environment. Agergsegecuted by a MAM
component, which provides a runtime environment (API) enthwith MAM specific
functionality. The MAM components use AOS internally whaey communicate with
each other, when an agent's state needs to be altered, onitwvesus to be migrated to
another AOS kernel. Note that services do not host ageresSgsetion 3.2).

AOS has a specification that clearly describes the methoB§ @ovided by AOS
to higher-level middleware systems, including argumentssemantics. The AOS ker-
nel effectively hides differences in the underlying opeigsystem with regard to com-
munication interfaces and file system access from the psesdhat use AOS. MAM

A Common Base for Building Secure Mobile Agent Middlewares@yns 17

components invoke AOS API methods using RPC calls. DiffelRF?C interfaces have
been implemented, for Sun RPC, Java-RMI and XML/RPC. THsna the MAM
processes to be implemented in a different language than A@ within the same
MAM. AOS allows for multiple so-called dispatchers that il@ment different RPC
implementations, to be used simultaneously such that ampoaent can use an RPC
interface of its choicé.

3.2 AOS Concepts and Primitives

The AOS API provides primitives for agent transport (shifggieceiving ACs), and
communication (creating endpoints and connecting/agugpbnnections). In addition,
the API contains calls allowing for safe sharing of AOS betwedifferent MAM com-
ponents. The agent transport mechanism provides integritiection of agent code
and (meta-) data, and the communication methods includmpleibut highly effec-
tive authentication model (see Section 3.3). Note that tR¢ dontains no primitives
for process management. This is because different mobdatagiddleware systems
have very different methods for managing agent processgsexample, some agent
systems use a thread-based model, where agents run asdithassagent server pro-
cess, whereas in other systems each agent runs as an indeppratess. As a result,
it is hard to attain a single, simple model for agent proceasagement, and process
management is therefore left to the mobile agent middleware

Agent Containers Agent code, data, and meta-data (e.g., owner informatiomg t
of creation, permissions, etc.) are stored in AOS in a datectstre called thédgent
Container (AC) The AC is, in fact, an archive with a table of contents, imalnlg
segments (e.g., code), and mutable segments (e.g., sthéeigiliary data). Primitives
for creation of AC and segments, and reading/writing sedsere part of the API.

In addition, afinalizecall is used to synchronize any new content of the AC to disk
(to allow for recovery if AOS crashes and is restafjednd to generate checksums in
a securelable of Contents (ToQ)f the AC’s segments. The secure ToC is used for
integrity verification of an AC when it is received by anoti®€'S kernel. Finalize must
be called before an agent can be migrated to another AOS.

Communication Endpoints Communication-related calls include creation and dele-
tion of communication endpoints (similar to Unix socketshnnect, accept, send, re-
ceive, and select calls exist which allow for setting up asoh@ secure, reliable, or-
dered communication channels to these endpoints. Coonedietween the same pair
of AOS kernels, with the same security properties (i.e.ptographiccipher suite},

are multiplexed over a single AOS “base channel” interned AOS. This allows for

Y In particular, it is straightforward for a Java-based mésleire to use Java-RMI, whereas a
C-based middleware implementation can more straightfiatiyaise Sun RPC.

2 The API defines error codes that allow for detection of an A€Sart, and contains a call for
re-initializing AOS resources after such an event was detHoy the middleware.

18 Guido J. van 't Noordende et al.

a reduction of connection setup times by amortizing expenisiitial secure connec-
tion setup times over multiple connections, compared tingetip new secure connec-
tions for each connection. The method for setting up secon@ections is discussed
in Section 3.3. Agent transport makes use of the same int&@a connection imple-
mentation, allowing for safe (integrity and confidentialitrotected) transport of agent
containers.

Secure Sharing of AOS Secure sharing of a single AOS instance and its resources
by different unrelated agent middleware on the same hostabled by the concept
of arole. A role is a set of resources associated with a cryptografiiprotected
authentication token (calledaokig, which is used by an agent middleware to invoke
methods on AOS. AOS creates this cookie securely, and atsie an internal data
structure that describes the resources associated wstbdbkie. We refer to this cookie
and its associated resources as a role.

During start-up of AOS, arnit role is generated, that is allowed to invoke any
method on the AOS API. The init role is used byiait processthat controls usage of
AOS (think ofinit process in Unix). Given the init role, the init process canagate
other roles, which are callechild roles Generally, these roles allow users to create
additional subroles for components within the same agedtlimvare® For example,

a service may only be allowed to use communication relatéd, @nd agent servers
may only be allowed to access the ACs of the agents they maAagigning a new

role to each MAM component allows for compartmentalizatiban agent middleware
system. This avoids that a single compromised MAM compooantcompromise the
state of another MAM component that uses the same AOS irstarg:., by destroying
AOS kernel objects such as ACs.

Roles determine ownership of resources in AOS. Resourcaglim agent contain-
ers, communication channels, and child roles. When a rotelisted (using an AOS
call), all resources associated with this role are delareduding subroles and their
resources. In principle, roles are persistent such that irdbrmation and resources
(in particular, ACs) can be recovered after an AOS crash stesy reboot. AOS imple-
ments resource protection by imposing limits on the numbersources (and subroles)
owned by arole.

3.3 Authentication Model

AOS comes with a simple but highly effective authenticatiodel based on public
key cryptography, that is used when connections are set d@@ents are shipped to
other AOS kernels. The authentication model is based onaheapt ofSelf-certifying
Identifiers (ScIDs]5]. A ScID is a SHA-1 hash of the public key of an AOS kernel,
where the AOS kernel has access to the associated private key

Each endpoint created by an AOS kernel, both for AC transpatfor communica-
tion, is described by a data structure that contains a Scéddlition to the AOS kernel's
endpoint information (i.e., IPv4/v6 address and port).sTdta structure is used by a

8 Each user may obtain its own initial role by requesting itrirthe init process, or through some
other way; the way in which an init process functions prdgigenot currently specified.

A Common Base for Building Secure Mobile Agent Middlewarest®yns 19

MAM component to set up a connection or to ship an AC to andih&k component
using AOS, where AOS internally verifies that its peer AOSkethas the private key
corresponding to the ScID in the AOS contact record. A stethdathentication proto-
col (i.e., TLS/SSL) is used for authentication and key-exae, as part of setting up an
efficient, secure, encrypted channel to the peer AOS. The MAMponent can specify
the cryptographic cipher suite for the channel at connact@up time. The advantage
of ScIDs over, e.g., X.509 based authentication model$iasrio PKI infrastructures
are required to bind keys to identities, as ScIDs are usdueasame of the entity (AOS
kernel), and are coupled directly to its key as described@bo

3.4 End-to-End Authentication and Secure Communication

When AOS is shared between multiple MAM systems, each MAMuihbe able to
authenticate its peer MAM end-to-end, to ensure it is noheated to another MAM
that uses AOS at the same time. To this purpose, the AOS emtdyaih structure ex-
plained above can be included inviddleware Contact Record (MCRin addition to
information that can be used to securely identify (auttoadi) the middleware running
on top of AOS. This MCR can be used by the MAM to set up a secumete-end au-
thenticated connection to another MAM, using an encryptaalsiport set up using the
AOS contact information in the MCR. An MCR can contain a Sslftifying ID (SclD)
of the peer middleware process, so that it can be autheadicaing the mechanism out-
lined in Section 3.3. Another approach is to use a simple narttee MCR which can
be combined with a PKI to securely authenticate a remote Ieidide process. AOS
does not force any particular authentication model upomrtiaelleware.

To securely use AOS channels as the basis for an end-to-é&mehgigcated channel,
both middleware processes must, after authenticating etiglr, exchange authenti-
cated messages to each other that contain the AOS endpfmimation of their own
(trusted) AOS kernel. This is required, because if this khiges not take place, an im-
postor AOS kernel may sit between the endpoint AOS kernedsraan-in-the-middle,
which could decrypt and read all information passed overctiennel—as generally
only MAM authentication information is known at the time wha& connection is made.
After such information is exchanged, both parties are oettsat they communicate
through the remote AOS kernel that is actually used by theér.pOnly in this case,
can the confidentiality of the underlying AOS channel bet&dsallowing the middle-
ware processes to let AOS take care of encryption of the atimmeitself without the
middleware processes having to encrypt the connectiori@edd.

3.5 Secure Agent Migration

AOS provides mechanisms for shipping an AC to another AOB&te AOS signs a
secureTable of Contents (ToQ)f the AC, which is used by the receiving AOS ker-
nel for integrity protection. The ToC data structure is &lae to the MAM layer. The
MAM layer has to implement a secure agent transport pro{@dd?) on top of the AOS
mechanism for shipping an AC to allow for additional, midddee specific authentica-
tion and control over agent transport. For example, speaifite segments may have to
be presentin an AC as a prerequisite for starting it up in aifpdAM process. Other

20 Guido J. van 't Noordende et al.

extensions to the basic ATP provided by AOS are the construof secure audit trails,
describing all changes made to the AC during the agentiriiry [8, 10]. Different se-
curity mechanisms at the MAM layer can be conceived (see,[@@]); AOS provides
all the necessary hooks to construct such mechanismsieéfigct

4 Performance

For a central component such as AOS, which is intended to ée fos all interpro-
cess communication, mobile agent code/data managemenhigndtion operations,
performance is highly important. This section presentaifgoach in which two AOS
kernels were implemented and used in our department, andsdiss performance of
these AOS kernels. Measurements of performance of agemtienidre that runs on
top of AOS is not provided in this section; since these aspat middleware imple-
mentation specific, it is chosen to focus on the overheadradtionality of AOS itself,
which is most likely to impact the performance and scalghdf the agent middleware
system that uses AOS. In particular, communication thrpugland scalability have
been tested, and AC shipment related overhead and scglabierms of concurrently
shipped ACs.

Independently, two versions of AOS have been implementeel jtw Java and one
in C++, based on a precise specification of the AOS interfaddlae internal protocols
used by AOS' These AOS kernels have been thoroughly tested on interoitigra
Both the Java and the C++ kernel are used to construct twer€iff agent middleware
systems in our group, Mansion [10] (written in C) and AgemiSe[6] (written in Java).
These two mobile agent systems are quite different in thesigth and implementation
decisions; even so, AOS has shown to be a solid basis fordbestruction.

This section evaluates the performance of the Java and C-&-k&@els. Although
the tests are limited to AOS operations, the aspects mahsuecexpected to most
influence the performance of a mobile agent middleware sybtélt using AOS.

All tests were run on a dedicated 1 GHz dual Pentium-Ill maehvith LGB mem-
ory, running Linux on an ext3 filesystem and using a Fast Eitgf100 Mbit/s) local
area network. Tests with the Java kernel used the Sun Jawah&ard compiler and
Java HotSpot server virtual machine version 1.5. The cgypfohic libraries used in the
Java AOS kernel are from Bouncy Castle.

The tests were run with modified AOS kernels that includedrosiecond timers,
and were executed 5 to 10 times in a row, with averages showhisirsection. For all
tests that use AOS-to-AOS communication, the connectisagafigured to use 128
bits AES encryption with SHA-1 message authenticafion.

4.1 AOS-t0-AOS Communication Cost

AOS uses an internal protocol to multiplex communicatioarghels over a single inter-
nal encrypted “base channel.” Figure 2 shows the performand scalability of AOS

4 The AOS specification can be requested from the authors.
Shttp://ww. bouncycastle.org
8 AES provides a reasonable trade-off between security divieeicy, compared to e.g., 3DES.

A Common Base for Building Secure Mobile Agent Middlewares@yns 21

for communication, for 1 to 16 threads communicating corenity over AOS. In this
experiment, each thread sends 25 MB over an AES encryptedchasnel to a server
process running on a different AOS kernel.

Mux transfer, 50 mb, total throughput

9000 s

C —
8000 java/AES ----x—--
7000t ST

6000
5000
4000 o
3000 %
2000
1000

Throughput (kb/sec)

#Threads

Fig. 2. Total throughput for multiplexed communication over a sltbAOS-to-AOS connection.

As shown in Fig. 2, the C++ kernel has a substantially highesughput than the
Java kernel, which is due to the fact that the OpenSSL liirapfemented in C is faster
than the pure Java Bouncy Castle SSL implementation usdueidava kernel.Both
kernels apply locking strategies to make sure that onlygleifread can write payload
on the base channel. The figure shows that the total througlgos roughly the same
for both kernels, irrespective of the number of threadssmatiltaneously send payload
over the wire, although some variation exists which remaimexplained. Although the
per-thread throughput decreases linearly with the numitereads for obvious reasons
(i.e., sharing and overall saturation of the underlyingremiion), the AOS kernels and
the internal protocol used for multiplexing do not adveysefluence scalability.

4.2 Finalize Costs

Prior to shipping an AC, an AC must be finalized to ensure thafC’s table of content
is generated, and that all segments are stored safely infdezgynchronized to disk.
Finalize is a call that constructs a secure Table of ContktiteoAC and signs it, prior
to shipping it to another AOS kernel. In addition, finalizeey the AC to disk for crash
recovery reasons.

Table 1 shows a microbenchmark of the finalize costs of agemamers of 500 KB,
1 MB and 5 MB containing random data. These sizes are typictahfiny agents used
in our own agent middleware system. ToC checksumming amirgjgause little over-
head, even for large ACs, and this increases linearly wighsibe of the AC. This is
because the checksum (SHA-1 hash) generation has to taleqiar every byte of all

" Performance measures with an unencrypted (NULL) SSL chahiog that Java performance
in the unencrypted case comes close to the performance Gftth&ernel in the same scenario.

22 Guido J. van 't Noordende et al.

Table 1.Finalize micro benchmarks (in milliseconds) for resp. the-Rernel and the Java kernel.

C++ Java
500kH 1mb] 5mb||500kd 1mb[5mb
checksum| 9 19| 98| 36 | 74| 70

sign 51 | 52| 70 5 |16 51
zip 133 | 248|1356| 145 |303|1449
sync 166 | 238|922 179 [401(1623
total 359 |558|2444| 442 |878|3854

segments. Creating a zip file and synchronizing it to diskseasubstantial overhead,
because zipping requires that each segment is copied iataiphfile, possibly after
compression. Synchronizing the resulting zip file to diskis® rather expensive. Final-
ize times scale roughly linearly with the AC sizes for both ttava and the C kernel,
although finalize takes substantially longer on the Javadtehan on the C kernel.

As mobile agents may migrate often during their lifetime, fx@alize and transfer
cost can increase the time for an agent to achieve its tasidemably, and influences
scalability of the mobile agent middleware as a whole, whichonfirmed by expe-
riences with our own agent middleware systems. A straigivdiod optimization for
performance, is to have AOS ship segment files to another Agdsekdirectly, without
zipping the files first, in an FTP-like manner. Another polesdptimization is to let go
of the crash recovery assurance by means of the fsync sysiém c

4.3 AC Shipment Cost

AC shipment is composed ofshi p_ac primitive combined with avai t _ac prim-
itive at the receiving end, which returns after shipmentampleted. Ship_ac takes a
finalized agent container, and ships it over an SSL conneasalescribed above. After
receipt of the AC, the receiving AOS kernel extracts the #geip file containing the
agent’'s segments, and verifies the checksums in and thelsigraver its ToC. Only
after this verification, wait_ac returns. After an acknadgement is received for all
shipped ACs, the timer is stopped. The ship_ac cost measimusdncludes both the
on-the-wire time and the extract/verify cost at the recgj\énd.

The total ship_ac costs including AC extraction and veriiiicawere measured for
AC sizes of 500KB, 1 MB, and 5MB containing identical segnsenit 5 KB random
binary data. The cost of extracting and verifying an AC aitds received depends
primarily on the size of the AC. The times for ZIP extractiatefault compression
ratio) and signature and checksum verification in the C+addeare 0.064, 0.127, and
0.734 sec. for 500KB, 1 MB, and 5 MB, respectively. Extractmd verification in the
Java kernel takes substantially longer, namely 0.597 31 &% 3.472 sec., respectively.
Of these times, about 80—90% is spent on unzipping the AC.

Figure 3 shows the results for both the C++ kernel and the denreel for 1, 2, 4,

8 and 16 ship_ac calls at the same time. The figures show th&tshi ac calls scale
roughly linearly with concurrent use. The figures also shiat the time needed to ship
an AC is more for the Java kernel than for the C++ kernel. This loe attributed in

A Common Base for Building Secure Mobile Agent Middlewarest®yns 23

12 T T T T 45 T T T
1m Java—— 5m Java——
10 b 500k Java----x--- 40 ' 5y Gt ——oxeems

Im CH+ oxes 35
++

500k C a 30
25
20
i 15
Jetie . AR S 10
{/—"'” . . 5 = -

0 T . 0 o
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

#Threads #Threads

Total times (sec)
(2]

Total times (sec)
s

Fig. 3. Elapsed time to ship 1-16 Agent Containers of 500 KB resp. 1(M#f), and 5MB for
both the Java and the C++ kernel.

part to the fact that cryptography (for encrypting the carnio) and AC extraction and
verification take longer in Java than in C++.

5 Related Work

Comparison of AOS with other related work should be done wWithdesign require-
ments of AOS in mind. As AOS is not an agent middleware itdwif,rather a middle-
ware building block, comparing AOS with full functional nitware can only be done
partially by considering the leading design requirements.

The FIPA standard specification includes a series of doctsmescribing the func-
tionality and operation of agent middleware. FIPA compliagent middleware can
interoperate which each other, e.g., agents can exchanggages, interact with, and
reason about agents on other middleware. One of the mosiywided FIPA compliant
agent middleware is JADE [1]. The latest middleware desigmgjon 3.5 as of today)
is modular in design and many parties (universities and @ongs) have contributed to
JADE. The middleware is implemented in Java and supportgeaAial for agent devel-
opment. It is a complete self-relying system, with integddbcation and yellow pages
services. This is different from the AOS perspective to ageiddleware, where ser-
vices can be arbitrary location or yellow pages serviceb saisdDNS or LDAP servers.

Ajanta [4] is designed to include a number of security priveg and architec-
ture features to protect both the host and the agent frontioa$i actions. It includes
amongst others a similar concept as the agent container 8, Allbwing for an audit
trail mechanism resembling the one outlined in this papdriafil0]. However, Ajanta
is completely Java-based and is not designed to incorporétgeract with other soft-
ware components or services.

The Tacoma [3] project focuses on operating system supporhbbile agents. In
that respect, it has many similar design goals as AOS by girayiabstractions for, in
particular, data storage and agent mobility. Althoughdbaidrovides a simple container
abstraction, called a “briefcase”, only very simple prétat mechanisms were imple-
mented. Tacoma supports multiple programming languagesgents, in particular C
and Tcl/Tk.

24 Guido J. van 't Noordende et al.

The MadKit agent platform architecture [2] aims to providgemeric multi-agent
platform. The architecture is based on a minimalist agemtedelecoupled from specific
agency models. Although there are similarities with thegtegoals of the architecture
model with AOS, the design and implementation is quite diffe. The aim of MadKit is
to allow a developer to implement its own agent architegtuBasic services like mes-
sage passing, migration, monitoring, or management, arnaged by platform agents.
MadKit comes with a set of “containers”, realizing diffetexecution environments
for running an application. Alternatively, AOS aims to pid® a layer for constructing
different agent middleware, and is not directly used by &gen

6 Summary

This paper discusses the design requirements, implenmntahd performance of the
AOS kernel. AOS is a portable middleware building block sfieally aimed at con-
structing mobile agent middleware systems. It can be usediffisrent MAM pro-
cesses, possibly of different users, independently, whaod such process may be
implemented in a different language. Programming langdksyébility is facilitated
by the use of different RPC dispatchers, each providing datkinvocation interface
suitable for a specific language. The AOS design allows foargesharing of a single
AOS kernel between different middleware processes: itigeseffective software fault
isolation and safety by separating resources created teyelit middleware processes.

AOS provides a minimal set of primitives that are general tbile agent systems,
in particular for agent code and data storage, agent transpa for communication
between mobile agent middleware components. AOS providsig Isecurity services
which can be used by higher-level middleware layers to coostnore elaborate se-
curity, such as authentication mechanisms and secure ttigesport and auditing of
mobile agents. AOS does not impose a specific model on the agddleware.

Two implementations of AOS have been built and tested farogerability. Per-
formance measurements of the AOS kernel were shown in tpisrpahich show that
AOS performs reasonably well, with noticeable differenbesveen the Java and the
C++ kernel. The C++ kernel outperforms the Java kernel fostrtests, primarily due
to the fact that C is more efficient than Java for tasks suchygsagraphy, which is used
throughout the AOS kernel. On the other hand, Java providitsitportability, and the
Java kernel has been used to run the AgentScape mobile dgdatm on Linux, So-
laris, Mac OS X, and Windows systems. The C++ kernel is ctiyremly available for
Linux and Solaris platforms. Both implementations of AOSevshown to scale well
with respect to concurrent usage by middleware systemsfonwunication and trans-
port of Agent Containers, which is important when using A©$8dnstruct large-scale
distributed mobile agent systems.

Acknowledgements

A number of colleagues have contributed ideas and helpedde parts of the AOS
kernel. The authors would like to acknowledge Etienne Rostls, Patrick Verkaik,
Arno Bakker, David Mobach, and Michel Oey. Maarten van StewhNiek Wijngaards

A Common Base for Building Secure Mobile Agent Middlewarest®yns 25

are acknowledged for early contributions to this work. Treisearch is supported by the
NLnet Foundationht t p: / / www. nl net . nl

References

10.

F. Bellifemine, A. Poggi, and G. Rimassa. Developing iadent systems with a FIPA-
compliant agent frameworkSoftware — Practice and Experien@1(2):103-128, 2001.

. Olivier Gutknecht and Jacques Ferber. The MADKIT ageatfptm architecture. IfPro-

ceedings of the International Workshop on Infrastructwe Multi-Agent Systemspages
48-55, Montreal, Canada, June 2000.

. D. Johansen, R. van Renesse, and F.B. Schneider. Opesgtitems support for mobile

agents. InProceedings of the 5th Workshop on Hot Topics in OperatirgeBys pages
42-45, Orcas Island, WA, May 1995.

. N. Karnik and A. Tripathi. Security in the Ajanta mobileesry system Software — Practice

and Experience31(4):301-329, April 2001.

. D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Witchetp&ating key management

from file system security. IRroceedings of the 17th ACM Symposium on Operating Systems
Principles pages 124-139, 1999.

. N. J. E. Wijngaards; B. J. Overeinder; M. van Steen; F.N8fRzier. Supporting Internet-

Scale Multi-Agent System®ata and Knowledge Engineering 41(2-2pD02. pp. 229-245.

. N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A. HRl Jeffers, T. S. Mitrovich,

B. R. Pouliot, and D. S. Smith. NOMADS: Toward a strong an@ sabbile agent system. In
Proceedings of the Fourth International Conference on Aatoous Agentpages 163—-164,
Barcelona, Spain, June 2000.

. Anand R. Tripathi, Tanvir Ahmed, and Neeran M. Karnik. Esipnces and future challenges

in mobile agent programmingMicroprocessor and Microsystem25(2):121-129, April
2001.

. G. J. van 't Noordende, A. Balogh, R. Hofman, F. M. T. Brazand A. S. Tanenbaum.

A secure jailing system for confining untrusted applicagiomternational Conference on
Security and Cryptography (SECRYPT), Barcelona, Spaily 28-31 2007.

Guido J. van 't Noordende, Frances M. T. Brazier, and Awds. Tanenbaum. Security in a
mobile agent system. IRroceedings of the First IEEE Symposium on Multi-Agent Sgcu
and Survivability pages 35-45, Philadelphia, PA, August 2004.

