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The need for private life is neither new nor temporary,
and worthy of defense.
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1 Introduction

With the emergence of computers and the internet, the collection, storage and
processing of information about private lives is becoming ubiquitous. Large
amounts of data about citizens are stored in various data sets, spread over
databases managed by di↵erent organizations all around the world [3, 27, 70].
Data about individuals drives policy research on all sorts of topics: finance,
health, and public administration, to name a few. Increasingly, data about
individuals is also collected for purposes other than policy research: target-
ing advertising, personalized medicine, individual risk-profile based insurance,
welfare fraud detection, and so on.

Suppose one is asked to anonymously fill out a questionnaire containing
questions about privacy-sensitive subjects such as health and politics. At the
end, one is asked to reveal age, gender and (partial) postal code. What is the
privacy risk associated with revealing that additional information? Can one be
su�ciently sure that revealing that information does not allow the pollster, or
anyone else with access to the questionnaire form or the database which one’s
answers probably end up in, to identify one afterwards by matching that infor-
mation to public profiles on social media, or by asking a friend at the registry
o�ce or tax authority to match it to the database of named citizens? After all,
that might enable the pollster to ‘hold answers against’ the respondent and to
include in her analysis information about the respondent that the respondent
were not asked for during the questionnaire, or decided not to disclose.

1



2 CHAPTER 1. INTRODUCTION

Motivated by the desire to establish a better understanding of privacy, and
thereby take away some of the fear, uncertainty and doubt surrounding privacy
problems, the objective of this thesis is to study techniques for measuring and
predicting privacy. Ideally, we want to develop mathematical tools useful for
privacy risk assessment at both the personal level and the population level.

Unfortunately, the word privacy su↵ers from semantic overload. Privacy
can be approached from various perspectives, such as ethics, law, sociology,
economics and technology (the latter being our perspective). Before focusing
on how to measure, we first want to know what to measure and why. To that
end, this introductory Chapter has a broad scope and first considers multidis-
ciplinary aspects of privacy. A property shared between various perspectives
is that privacy entails some desire to hide one’s characteristics, choices, be-
havior and communication from scrutiny by others. Such ‘retreat from wider
society’ may be temporary, such as when visiting the bathroom, or more per-
manent, such as when opting for hermit life or choosing to publish using a
pseudonym. Another prevalent property is that privacy entails some desire to
exercise control over the use of such information, for example to prevent misuse
or secondary use. Phrases commonly associated with privacy include “the right
to be let alone”, meaning freedom of interference by others [85]; “the selective
control of access to the self or to one’s group”, meaning the ability to seek or
avoid interaction in accordance with the privacy level desired at a particular
time [2]; and “informational self-determination”, meaning the ability to exer-
cise control over disclosure of information about oneself. The latter phrase was
first used in a ruling by the German Constitutional Court related to the 1983
German census.

It is unlikely that any reasonable person would accept that all their thoughts,
feelings, social relations, travels, communication, physical appearance includ-
ing the naked body, sexual preferences, life choices and other behavior are
knowable by anyone, at any time, without restriction — not least because that
exposes them beyond their control to yet unknown people and institutions in
yet unknown situations, i.e., pose a risk to their personal security and/or feeling
of security.

At the same time, transparency of the individual can reduce risk, includ-
ing collective risk. In the Netherlands, for example, the welfare-issuing Dutch
municipalities have commissioned an organization named Stichting Inlichtin-
genbureau1 to counter welfare fraud via linkage and analysis of data about
welfare recipients. Stichting Inlichtingenbureau can link welfare registry data
to judicial registry data for purposes of stopping fugitive convicts from receiv-
ing welfare and informing the Dutch Ministry of Justice of the whereabouts of
fugitives. Nowadays, Stichting Inlichtingenbureau also provides services to the
Dutch water control boards (‘waterschappen’), Regional Coordinationpoints

1Website: http://www.inlichtingenbureau.nl
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Fraud Control (‘RCF - Kenniscentrum Handhaving’), Regional Reporting and
Coordination function school dropouts (RMC), Central Fine Collection Agency
(CJIB), Social Insurances Bank (SVB), and baili↵s2.

Risk reduction can, at least theoretically, pervert into seeking a risk-free
society [38] and suppress behavior that is permissible but deviates from social
norms. Not unlike the ‘chilling e↵ect’, i.e. the stifling e↵ect that overly broad
laws [29], profiling and surveillance [39] are claimed to have on legitimate be-
havior such as exercising the constitutional right to free speech. Although we
are unaware of scientific evidence for such causality (it is beyond our exper-
tise), one only needs to consider practices in certain parts of the world to be
convinced that (being aware of) the possibility of being scrutinized can cause
a person to change her behavior. Think of a person not expressing a dissent-
ing opinion near a microphone-equipped surveillance camera at work or in a
public space where that person would otherwise have done so; or a person not
traveling to the red light district, even if one needs to be there for some other
than the obvious reason, due to fear of abuse of data collected by real-time
vehicular registration systems and public transport smart card systems. Per-
haps both find alternative ways to achieve their goal; but it seems unwise to
assume that that is always the case, and then disregard the e↵ects that tech-
nology and human-technology interaction can have on the human experience
to which privacy is essential. The need for risk reduction and accountability
at the collective level can be at odds with the need for privacy at the personal
level; what constitutes the ‘right’ balance will depend on context.

Certain personal information is considered ‘sensitive’ because it can, and
has often shown to, catalyze stigmatization, social exclusion and oppression:
ethnicity, religion, gender, sexuality, social disease, political and religious pref-
erence, consumptive behavior, whether one has been victim or culprit of crime,
and so on. The need for private life, also in terms of being able to keep certain
information to oneself, is therefore neither new nor temporary, and worthy of
defense. Reducing misunderstanding and mistreatment through means of pub-
lic education, especially the promotion of reason, critical thinking and empathy,
is one step forward; forbidding discrimination through legislation is another;
enabling privacy impact assessment and control over the disclosure of informa-
tion about oneself, especially sensitive information, the topic of our thesis, is
yet another.

The rise of social media and ubiquitous computing does not imply the ‘end’
or ‘death’ of privacy. Rather, as Evgeny Morozov paraphrased from Helen Nis-
senbaum’s book [61] in The Times Literary Supplement of March 12th, 2010:
“the information revolution has been so disruptive and happened so fast (...)
that the minuscule and mostly imperceptible changes that digital technology

2According to a trend report issued by the Dutch governmental Research and Docu-
mentation Centre (WODC), 368 baili↵s and 414 junior baili↵s were active during 2005:
https://www.wodc.nl/images/ob247-summary_tcm44-59825.pdf
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has brought to our lives may not have properly registered on the social radar”.
In her 2.5-year ethnographic study of American youngsters’ engagement with
social network sites, Boyd observed that youngster’s “developed potent strate-
gies for managing the complexities of and social awkwardness incurred by these
sites” [8]. So, rather than privacy being irrelevant to them, the youngsters
found a way to work around the lack of built-in privacy. In conclusion: privacy
is not dead. At worst, it is in intensive care, beaten up by overzealous and
sometimes careless use of technology. It will return to good health, even if
merely for economical reasons [5].

It remains unclear when the desire to retreat first emerged, and even whether
it is only found in humans. From an evolutionary or biological perspective, pri-
vacy might be explained by the claim that hiding oneself and one’s resources
from predators and competitors in the struggle for existence is beneficial for
survival. The desire to retreat, then, is perhaps as old as the struggle for exis-
tence itself. This notion, however, seems very distant from common ideas about
privacy. With more certainty, sociological study has traced the emergence of
withdrawal from classical antiquity — distinguishing between ‘religiously mo-
tivated quest for solitude’ and the ‘lay quest for private living space’ [86].
Alternatively, privacy can be conceived as a means to ‘personal security’.

What is clear, is that privacy has been thoroughly studied. The next Section
will address notable concepts and terminology proposed in disciplines other
than our own (technology, that is), establishing a broad background for our
work3. We then proceed by mapping our work to specific parts of that theory.
Finally, wrapping up this introduction, we state the scientific contributions of
this thesis. Throughout this thesis, we will develop methods and techniques for
the quantification and prediction of identifiability in support of the analysis of
privacy problems regarding the disclosure, collection and sharing of personal
information. The questionnaire mentioned above is an example scenario to
which our work is relevant. More importantly, our work is relevant to computer
databases, which tend to be linked to other databases via computer networks
and can be exposed to those seeking authorized and unauthorized access to the
data.

1.1 Terminology

From a legal perspective, one of the early and most well-known comprehensive
works on privacy dates from 1890, when US Supreme Court Justices War-
ren and Brandeis published “The Right to Privacy” in the Harvard Law Re-
view [85]. In the 20th century, Castle Doctrine emerged in legislation of self-
defense of one’s private space [54] — its name referring to the proverb “a
man’s house is his castle”. During the 1960s, Westin, a legal scholar who fo-

3Chapter 2 will establish the background within our own discipline.
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cused on consumer data privacy and data protection, described four ‘states’
and four ‘functions’ of privacy [87, 38]. Figure 1.1 shows our mind-map of his
conceptualization. The four functions, or ‘ends’, or ‘reasons’ for privacy that
Westin distinguishes are personal autonomy, e.g. regarding decisions concern-
ing personal lifestyle; emotional release, e.g. of tensions related to social norms;
self-evaluation, e.g. extracting meaning from personal experiences; and lim-
ited and protected communication, e.g. disclosing information only to trusted
others. The four states, or ‘means’ to privacy that Westin distinguishes are
anonymity, e.g. ‘hiding’ within a group or crowd; reserve, e.g. holding back
certain communication and behavior; solitude, e.g. seeking separation from
others; and intimacy, e.g. seeking proximity to a small group.

Privacy

Definition (Westin, 1964)

States

Anonymity

Reserve

Solitude

Intimacy

Functions

Personal autonomy

Emotional release

Self-evaluation

Limited and protected communication

Figure 1.1: Privacy in ‘functions’ and ‘states’, according to Westin [87].

In the same era, Prosser, a legal scholar focusing on tort law, wrote that
what had emerged from state and federal court decisions involving tort law
were four di↵erent interests in privacy, or ‘privacy torts’ [66, 22]:

• intrusion upon the plainti↵’s seclusion or solitude, or into his private
a↵airs;

• public disclosure of embarrassing private facts about the plainti↵;

• publicity which places the plainti↵ in a false light in the public eye;

• appropriation, for the defendant’s advantage, of the plainti↵’s name or
likeness.

More recently, in 2005, Solove, a legal scholar focusing on privacy, proposed
a taxonomy of privacy violations that, unlike Prosser’s, does not only focus
on tort law [74]. Figure 1.2 shows a map of that taxonomy. Solove describes
the violations as follows. Categorized under information processing activity:
aggregation comprises the combination of information about a person4; identi-
fication comprises linking information to specific persons; insecurity comprises

4Note that throughout this thesis, we use the word ‘aggregation’ di↵erently: we use it to
mean generalization or grouping of data about di↵erent people.
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Privacy

Violations (Solove, 2005)

Information dissemination

Breach of confidentiality

Disclosure

Exposure

Increased accessibility

Blackmail

Appropriation

Distortion

Information processing

Aggregation

Identification

Insecurity

Secondary use

Exclusion

Information collection
Surveillance

Interrogation

Invasions
Intrusion

Decisional interference

Figure 1.2: Taxonomy of privacy violations according to Solove [74].

lack of due diligence protecting (stored) personal information from leaks and
improper access; secondary use comprises the re-use of information, without
subject’s consent, for purposes di↵erent from the purpose for which it was
originally collected; exclusion comprises not allowing the subject to know or
influence how their information is being used. Categorized under information
collection activity: surveillance comprises “watching, listening to, or recording
of an individual’s activities”; interrogation comprises various forms of ques-
tioning or probing for information. Categorized under information dissemina-
tion activity: breach of confidentiality comprises “breaking a promise to keep
a person’s information confidential”; disclosure comprises revealing (truthful)
information that “impacts the way others judge [the] character [of the per-
son involved]”; exposure comprises revealing “another’s nudity, grief, or bodily
functions”; increased accessibility comprises “amplifying the accessibility of in-
formation”; blackmail comprises the threat to disclose personal information;
appropriation comprises the use of the subject’s identity “to serve the aims
and interests of another”; distortion comprises the dissemination of “false or
misleading information about individuals”. Categorized under invasions: in-
trusion comprises acts that “disturb one’s tranquility or solitude”; decisional
interference comprises “[governmental] incursion into the subject’s decisions re-
garding private a↵airs”. Section 1.2 will mention the violations that our work
is primarily relevant to.

The last work we deem relevant as background to our research stems from
2010: Nissenbaum, a scholar in media, culture, and communication & com-
puter science, conceptualized privacy as contextual integrity built from context-
relative informational norms [61]. By that she means that whether some in-
formation flow constitutes a privacy violation, depends on its source context
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— defined in terms of roles, activities, norms and values. We will reference
Nissenbaum’s work again in Chapter 7.

1.2 Problem

We will now describe the specific research objectives that we address in this
monograph. In an attempt to provide privacy, personal data that maps to
single persons, i.e., microdata, is sometimes de-identified by removing ‘direct
identifiers’ such as Social Security Numbers, names, addresses and phone num-
bers. De-identified data can still contain variables that, when combined, can be
used to re-identify the de-identified data. Potentially-identifying combinations
of variables are referred to as quasi-identifiers (QIDs) [21, 77]. The notion that
quasi-identifiers can be used to re-identify people based on microdata poses
questions on the usefulness of common de-identification procedures. Indeed,
the question whether de-identification su�ces to protect privacy in health re-
search was recently posed in the American Journal of Bioethics [68].

Sweeney introduced the concept of k-anonymity, addressing this privacy
risk by requiring that each quasi-identifier value (i.e., a combination of values
of multiple variables) present in a data set must occur at least k times in
that data set, asserting that each record maps to at least k individuals and
hence obfuscating the link between records and individuals [77]. In common
terminology, the group of k individuals within which one is indistinguishable
from k � 1 others is referred to as anonymity set (of size k) [64]. Motivated
by the importance of privacy, as we argued, and considering the privacy risk
posed from disclosure, collection and sharing of data about individual persons,
we ask:

• To what extent is it possible to predict what (combined) information will
turn out to be a perfect quasi-identifier, i.e., be unambiguously identifying
for all persons in a group/population?

– Example: “what is the probability that the combination of age, gen-
der and (partial) postal code is uniquely identifying for all persons
living in the postal code areas where my questionnaire is run?”

• For non-perfect quasi-identifiers, to what extent is it possible to predict
the size of the anonymity sets?

– Example: “what fraction of the citizens within this postal code area
is uniquely identifiable by the combination of age and gender?”

These questions can be answered relatively easily if quasi-identifiers follow the
uniform distribution: in that case, they can be directly translated to so-called
birthday problems. In reality, however, data about persons tends to not follow a
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uniform distribution; and for non-uniform distributions, the mathematics that
one would use to answer these questions becomes considerably harder. To our
knowledge, no method yet exists for e�cient approximation of these privacy
metrics for the case of non-uniform probability distributions.

One complicating factor in quasi-identifier analysis is the e↵ect of correla-
tion between various numerical personal data. What is the e↵ect on anonymity
of adding or removing a piece of information that correlates to an existing piece
of information in a quasi-identifier, versus adding or removing information that
is not correlated to other information?

Another complicating factor is the e↵ect on anonymity of collecting and
sharing less specific or more specific information. Being able to assess this be-
forehand supports informed decision-making about what data (not) to collect.

In terms of Solove’s taxonomy, these questions primarily map to violations
of disclosure, aggregation and identification. The main stakeholders of these
questions are the persons who’s data is involved, the data holders, and the
policy makers responsible for making privacy policy, potentially taking into
account social norms that have not been made explicit in legislation. Chapter 7
will return to this.

1.3 Contribution

Now that we stated the problem, we proceed to state our contributions to ad-
dressing that problem. Many improvements have been proposed to k-anonymity,
but only address the situation in which data has already been collected and
must be de-identified afterwards. A question remains: “can we predict what
information can be used for identification, so that we may decide not to collect
it, beforehand?” Our contributions are as follows:

• Chapter 2 surveys existing literature on the analysis of anonymity. Sev-
eral branches of research are identified. We specify to which branch our
thesis relates, and justify our choice to do research within that branch;

• Chapter 3 builds our case by inquiring into the identifiability of de-
identified hospital intake data and welfare fraud data about Dutch citi-
zens, using large amounts of data collected from municipal registry o�ces.
We show that large di↵erences can exist in (empirical) privacy, depending
on where a person lives;

• Anonymity can be quantified as the probability that each member of a
group can be uniquely identified using a QID. Estimating this uniqueness
probability is straightforward when all possible values of a quasi-identifier
are equally likely, i.e., when the underlying variable distribution is ho-
mogenous. In Chapter 4, we present an approach to estimate anonymity
for the more realistic case where the variables composing a QID follow a
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non-uniform distribution. Using birthday problem theory and large devi-
ations theory, we propose an e�cient and accurate approximation of the
uniqueness probability using the group size and a measure of heterogene-
ity named Kullback-Leibler distance. The approach is thoroughly vali-
dated by comparing approximations with results from simulations based
on the demographic data we collected for our empirical study;

• Where Chapter 4 addressed the problem of every member in a group be-
ing unambiguously identifiable, Chapter 5 proposes novel techniques for
characterizing the number of singletons, i.e., the number of persons hav-
ing 1-anonymity and are unambiguously identifiable, in the setting of the
generalized birthday problem. That is, the birthday problem in which
the birthdays are non-uniformly distributed over the year. Approxima-
tions for the mean and variance are presented that explicitly indicate the
impact of the heterogeneity, expressed in terms of the Kullback-Leibler
distance with respect to the homogeneous distribution, on anonymity. An
iterative scheme is presented for determining the distribution of the num-
ber of singletons. Here, our formulas are experimentally validated using
demographic data that is publicly available, allowing others to replicate
our work;

• In Chapter 6, we study in detail three specific issues in singletons analysis.
First, we assess the e↵ect on identifiability of non-uniformity of value
distributions in QIDs. Suppose one knows the exact age of every person
in a group; what is the e↵ect on identifiability that some ages occur
more frequently than others? Again, it turns out that the non-uniformity
can be captured well by a single number, the Kullback-Leibler distance,
and that the formulas we propose for approximation produce accurate
results. Second, we analyze the e↵ect of the granularity chosen in a series
of experiments. Clearly, revealing age in months rather than years will
result in a higher identifiability. We present a technique to quantify this
e↵ect, explicitly in terms of interval width. Third, we study the e↵ect of
correlation between the quantities revealed by the individuals; the leading
example is height and weight, which are positively correlated. For the
approximation of the identifiability level we present an explicit formula,
that incorporates the correlation coe�cient. We experimentally validate
our formulae using publicly available data and, in one case, using the
non-public data we collected in the early phase of our study;

• As a starting point for discussion, Chapter 7 gives preliminary ideas on
how our work might fit in real-life society, taking into account various
practical considerations.

We conclude our thesis in Chapter 8.
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Appendix A contains a key intermediate result from Chapter 5, and shows,
for varying k and N , the probability that no singletons exists in a group of
k members that are uniformly assigned one of N possibilities; i.e., the chance
that no person within a group can be uniquely identified by some uniformly
distributed quasi-identifier.

Appendix B discusses, as toy example, a non-sensitive anonymous ques-
tionnaire that was observed in real life. It explains how respondent anonymity
degrades for each demographic that the respondent discloses. This Appendix
is intended to inspire the reader to think about scenarios where analysis of
anonymity is relevant.



2 Background

This Chapter presents a study of existing literature on the analysis of anonymity.
Section 2.5 will introduce k-anonymity, a concept that will be referred to re-
peatedly throughout this thesis. Busy readers may skip to that Section without
risking unintelligibility of the remainder of this thesis.

Information systems for applications such as electronic voting, clinical health-
care and medical research should provide reliable security and privacy. Formal
methods are useful to verify or falsify system behavior against specific proper-
ties, including aspects of security and privacy. The mathematics that underlie
formal methods provide a more solid foundation for IT engineering than in-
formal methods do; an important reason for this is the disambiguating and
computer-verifiable nature of mathematical notation. Systems that are built
on (or using) formal methods are thus expected to be more reliable1.

We apply the vocabulary proposed by Pfitzmann and Hansen [64]. On
December 2nd, 2011 the Internet Architecture Board announced2 adoption
of this document with the“[aim] to establish a basic lexicon around privacy so

1However, one must take into account that formal modeling remains a human activity
and is, therefore, prone to human error, that mathematical specification of aspects about
vague concepts like security and privacy is a di�cult task and that in practice, typically
only parts of systems can be proven correct due to the subtleties and complexity of real-life
environments.

2
http://www.iab.org/2011/12/02/draft-on-privacy-terminology-adopted/ and

http://tools.ietf.org/html/draft-iab-privacy-terminology-00.

11
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that IETF contributors who wish to discuss privacy considerations within their
work can do so using terminology consistent across the area”. Note that this
vocabulary did not exist before 2000 and has been scarcely referred to. It is
sometimes di�cult to compare existing literature without re-explaining the use
of language. Key definitions:

Definition 2.1 Anonymity of a subject means that the subject is not identifi-
able within a set of subjects, the anonymity set.

Citing from [64]: “[being] ‘not identifiable within the anonymity set’ means that
only using the information the attacker has at his discretion, the subject is ‘not
uniquely characterized within the anonymity set’. In more precise language,
only using the information the attacker has at his discretion, the subject is ‘not
distinguishable from the other subjects within the anonymity set’.”

Definition 2.2 Anonymity of a subject from an attacker’s perspective means
that the attacker cannot su�ciently identify the subject within a set of subjects,
the anonymity set.

Definition 2.3 Unlinkability of two or more Items of Interest (IOIs, e.g., sub-
jects, messages, actions, ...) from an attacker’s perspective means that within
the system (comprising these and possibly other items), the attacker cannot
su�ciently distinguish whether these IOIs are related or not.

The size of the anonymity set in Definitions 2.1 and 2.2 is the unit of measure-
ment used throughout our work.

Privacy research related to electronic systems can roughly be divided in two
topics:

• Data anonymity: unlinkability of an individual and (anonymized) data
about him/her in databases;

• Communication anonymity: unlinkability of an individual and his/her
online activity.

From Definition 2.2 it follows that anonymity is relative to a specific point of
view: it depends on what the attacker knows a priori or can learn a posteriori
about the system, its environment and its users.

The remainder of this Chapter is organized as follows: Section 2.1 describes
early concepts; Section 2.2 refers to applications of information theory to re-
search on anonymity; Section 2.3 refers to applications of process calculus;
Section 2.4 refers to applications of epistemic logic; and Section 2.5 introduces
to k-anonymity, a concept that will be used intensively throughout this thesis.
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2.1 Early concepts

For the last two decades, research on identity hiding has largely been orbiting
around the concept of a mix introduced by Chaum [18]. A mix is a system
that accepts incoming messages, shu✏es, delays and permutes them, and sends
them to either the intended recipient or the next mix. The purpose of the inter-
mediate processing is to provide anonymity. What anonymity is provided, to
whom, to which degree and under what assumptions depends on the parameters
of the mix design and the context of its usage.

Many mix systems have been proposed with subtle variations on the pa-
rameters of shu✏ing, delaying and permutation — ‘permutation’ being the use
of cryptography to change message content so that to an observer, the input
messages are, in terms of content, unlinkable to output message. Those param-
eters are dictated by either the purpose of the system (e.g. anonymous e-mail,
anonymous file sharing, anonymous voting) or by assumptions about the con-
ditions under which the system will be used (e.g. a specific threat model, need
for interoperability with other systems, latency/throughput conditions).

Message-based mixes are designed to anonymize the communication of one-
o↵, independent, potentially large-sized messages; such systems are typically
designed to have high-latency and low-bandwidth properties. Connection-based
mixes are designed to anonymize the communication of streams of small mes-
sages (e.g. packets); such systems are typically designed to have low-latency
and high-bandwidth properties. It is sometimes mentioned that there is a
trade-o↵ between latency and anonymity, where high latency is associated with
stronger anonymity, and low latency with weaker anonymity.

Two anonymity protocols that are often used to demonstrate formaliza-
tions of communication anonymity related to mixes are the Dining Cryptogra-
phers protocol by Chaum in 1988, and the FOO92 voting scheme by Fujioka,
Okamoto and Ohta in 1992 [17, 30]. A description of those protocols is beyond
the scope of this thesis.

2.1.1 Degrees of anonymity

Anonymity is not a binary property; it is not either present or absent. Rather, a
subject is more easily or less easily identifiable at any given time, and anonymity
is a point on a scale. In 1998, Reiter and Rubin proposed a scales for degrees
of anonymity, as depicted in Figure 2.1 [67]. This scale is an informal notion,
but has aided discussion about anonymity systems.

Both in their original paper and most work that refers to that paper, a
focus is given to three intermediate points (citation from [67]):

• Beyond suspicion: A sender’s anonymity is beyond suspicion if though
the attacker can see evidence of a sent message, the sender appears no
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Figure 2.1: Degrees of anonymity according to Reiter and Rubin [67]

more likely to be the originiator of that message than any other potential
sender in the system.

• Probable innocence: A sender is probably innocent if, from the attacker’s
point of view, the sender appears no more likely to be the originator than
not be the originator. This is weaker than beyond suspicion in that the
attacker may have reason to expect that the sender is more likely to be
responsible than any other potential sender, but it still appears at least as
likely that the sender is not responsible. Or: to the attacker, the subject
has less than 50% chance of being the culprit.

• Possible innocence: A sender is possibly innocent if, from the attacker’s
point of view, there is a nontrivial probability that the real sender is some-
one else. Or: to the attacker, the subject has less than 100% chance of
being the culprit.

Halpern and O’Neill proposed a formal interpretation of such a scale using
epistemic logic [33]. The authors use notations such as Ki' to model that
agent i knows ', and Pi' to model that agent i thinks that ' is possible. The
formula ✓(i, a) is used to represent “agent i has performed action a, or will
perform a in the future”. For example:

Action a, performed by agent i, is minimally anonymous with
respect to agent j in the interpreted system I, if I |= ¬Kj [✓(i, a)].

In this example, the agent i is minimally anonymous with respect to agent j if
agent j does not know that agent i has performed action a. Another example:

Action a, performed by agent i, is totally anonymous with re-
spect to agent j in the interpreted system I, if I |= ✓(i, a) )V

i0 6=j Pj [✓(i0, a)].

In this example, the agent i is ‘totally anonymous’ with respect to agent j if
agent j thinks it is possible that the action could have been performed by any
of the agents. Note that this assumes that i and j are not the only two agents:
otherwise, agent j knows that agent i must have performed the action.

Chatzikokolakis and Palamidessi proposed a revised formalization of proba-
ble innocence, building on the formalism of probabilistic automata [16]. Citing
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from [16]: “A probabilistic automaton consists in a set of states, and labeled
transitions between them. For each node, the outgoing transitions are par-
titioned in groups called steps. Each step represents a probabilistic choice,
while the choice between the steps is nondeterministic”. The authors model
anonymity by considering the execution paths of the automata across proba-
bilistic action sets. The main contribution is that the authors’ notion conveys
both limits on an attacker’s confidence in knowing which subject belongs to an
observed event, and on the probability of detection.

2.1.2 Possibility, probability, and determinism

In anonymity theory, the notions of determinism, non-determinism, possibility
and probability refer to choice types that are present in a system.

Deterministic models represent systems of which behavior only depends on
internal states and is, therefore, predictable: at any given state, for some given
(deterministic) input, there is only one possible transition. The system behaves
the same for each execution.

Non-deterministic models represent systems of which behavior depends on
some unpredictable external state and is, therefore, unpredictable itself; or
at least very di�cult to predict. Examples of external states are user input,
schedulers, hardware timers/timing-sensitive programs, random variables and
stored disk data. For anonymity, users and random number generators are
two typical examples of non-deterministic aspects. Angelic non-determinism
models choices as if the inputs are not arbitrary, but are always biased to
guarantee success (‘good’ behavior). Demonic non-determinism models choices
as if they are arbitrary, and never made with guarantee for success (‘malicious’
or ‘ignorant’ behavior).

Possibilistic models represent systems in which at any given state, there
are N states to which transition is possible (N might be 1). No notion is
made regarding the probability of each transition. In contrast to deterministic
models, possibilistic models allow uncertainty; the models just do not explicitly
describe it.

Probabilistic models are possibilistic models with probabilities. A proba-
bilistic choice represents a set of alternative transitions where each transition
is assigned a probability of being chosen; in contrast, a non-deterministic model
has no notion of probability.

2.1.3 Anonymity set size

The most basic way to quantify anonymity is to use the anonymity set size.
Suppose a message M was sent by subject s

1

from anonymity set S of size N ,
and suppose an attacker that detected M at the recipient but has no other
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knowledge. In the anonymity set size metric, anonymity is then quantified as

anonymity set size =
1

N
(2.1)

For a set of size N = 10, the attacker can link M to s
1

only to a certainty of
1

10

. This metric assumes a uniform distribution of probabilities, and cannot be
applied to situations where this equidistribution is not present. As most real-
life systems deal with heterogeneous sets of subjects, this assumption almost
never holds, and thus more refined metrics are needed.

2.2 Information theory

This Section refers to existing literature on the application of Shannon-entropy
and Rényi-entropy to research on anonymity.

2.2.1 Shannon-entropy

In 2002, Serjantov and Diaz independently proposed the use of Shannon-
entropy to establish anonymity metrics that lift the equiprobability require-
ment [72]. Shannon-entropy quantifies the level of uncertainty inherent in a
set of data. In its (proposed) application to anonymity, the ‘set of data’ is the
probability distribution over the possible links between a message M and its
possible senders3 S. It assumes that an attacker is able to estimate probabil-
ities a posteriori after observing the system4. The Shannon entropy equation
provides a way to estimate the average minimum number of bits needed to en-
code a string of symbols, based on the frequency of the symbols. Anything can
be a symbol: letters like {A,B,C, ...}, persons like {subject

1

, ...subjectn}, col-
ors like {red, green, blue, ...}, et cetera. The (finite) set of possible symbols are
referred to as the source alphabet. According Shannon, on average, the number
of bits needed to represent the result of an uncertain event (e.g. production of
a symbol) is given by its entropy. The Shannon-entropy formula:

H(S) = �
NX

i=1

p(si) log
2

p(si) (2.2)

For anonymity, H(S) (the H-symbol is borrowed by Shannon from Boltzmann
H-Theorem in thermodynamics) denotes the number of additional bits the
attacker needs to perfectly link a message M to its sender subject si from set S
with size N (note that in the Pfitzmann-Hansen definition of ‘anonymity from

3 The proposed work only regards sender-anonymity; however, it may be suitable to
measure receiver-anonymity or relationship-anonymity as well.

4‘Observing’ might include passive attacks like statistical analysis, and/or active attacks
like repetitive querying or other experiments to deduce knowledge.
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an attacker’s perspective’, a subject is already non-anonymous if an attacker
is able to ‘su�ciently’ identify the subject, and the attacker might very well
be satisfied by a less-than-perfect link). To apply this probabilistic metric, the
attacker has to assign a probability p(si) to each subject si, where p(si) is a

value between 0 and 1 and
PN

i=1

p(si) = 1. Suppose a particular p(si) = 1,
then all the other p(si) are 0 and H(S) = 0; this means the attacker has a
perfect link. If all p(si) are equal, the metric ‘reduces’ to the basic anonymity
set size metric H(S) = log

2

|S|.
The degree of anonymity is a quantification of the amount of information

the system leaks about the probability distribution. The higher the degree, the
less information is leaked. The maximum entropy of the system is expressed
as HM :

HM = log
2

(N) (2.3)

The degree d is a value between 0 and 1 and is determined by HM � H(S),
then normalized by dividing by HM :

d = 1� HM �H(S)

HM
=

H(S)

HM
(2.4)

Here, d = 0 if an attacker can link message M to its originating subject with
probability 1, and d = 1 if it is equally likely to originate from any subject
from S.

For example: suppose a system with an anonymity set of size N = 10,
then maximum entropy HM = log

2

(10) ⇡ 3.32 bits. Suppose that based on
the outcome of passive or active observation of the system, the attacker esti-
mates/deduces that s

4

is 10 times more likely to be the sender than the other
nine subjects. The attacker will assign p(s

4

) = 0.5 while keeping the rest
uniform at p(si) = 1�0.5

9

⇡ 0.055: then H(S) ⇡ 2.58 bits and the degree of
anonymity d = 2.58

3.32 ⇡ 0.77. So, despite the single peak in probability assigned
by s

4

, the attacker is still lacking 2.58 bits of information needed to be fully
confident and the system still provides a degree of anonymity 0.77 (with 1 being
maximum). Indeed, this metric could also be applied as a measure of attack
e�ciency by using it to determine di↵erences in unobservability. (‘Unobserv-
ability’ meaning “undetectability of an [Item of Interest (IOI, e.g., subjects,
messages, actions, ...)] against all subjects uninvolved in it, and anonymity of
the subject(s) involved in the IOI even against the other subject(s) involved in
that IOI” [64].)

2.2.2 Rényi-entropy

Tóth, Hornák and Vajda argued that for some purposes of anonymity quan-
tification a worst-case metric is preferable over the average case metric that
Shannon-entropy provides [80]. In 2006, based on this notion, Clauß and
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Schi↵ner proposed the use of Rényi-entropy as a generalization of Shannon-,
Min- and Max-Entropy (and the authors provide the mathematical proof for
this generalization) [20]. The Rényi-entropy formula:

H↵(P ) =
1

1� ↵
log

2

X

X

p↵i (2.5)

Here, the more ↵ grows, the more H↵(P ) approaches Min-Entropy (Min-
Entropy is the situation where the attacker is certain that one subject is the
originator and hence that the other subjects cannot possibly be the origina-
tor). The more ↵ approaches zero, the more H↵(P ) approaches Max-Entropy
(Max-Entropy is the situation where from the attacker standpoint, all subjects
are equally likely to be the originator). The more ↵ approaches one, the more
H↵(P ) approaches Shannon-Entropy.

To overcome the strong influence of outliers, the authors propose the use of
quantiles. Quantiles allow that lower bound outliers are cut o↵. With regard
to this anonymity metric, it allows statements like: “10 bits of information
are needed to address 90% of the source elements”. Whereas with Shannon-
entropy, one can only make a statement regarding all of the source elements,
and has to accept that the statement can be strongly influenced by outliers.

2.3 Process calculi

Process calculi are algebraic notations that can be used to (formally) model
concurrent systems. They are typically associated with the area of theoretical
computer science. The three major branches of process calculi are the Calculus
of Communicating Systems, or CCS [55], Communicating Sequential Processes,
or CSP [37] and Algebra of Communicating Processes, or ACP [6].

The word process refers to the behavior of a system. To cite formal meth-
ods researcher Jos Baeten, behavior is “the total of events or actions that
a system can perform, the order in which they can be executed and maybe
other aspects such as timing or probabilities” [4]. Process calculi try to cap-
ture di↵erent ways in which concurrent systems can be designed in terms of
process creation (fork/wait, cobegin/end, etc), information exchange between
processes (message passing, shared variables) and management of shared re-
sources (semaphores, monitors, transactions, etc.) [65].

Considering that security and privacy are typically about concurring par-
ties, concurrent processes are an intüıtive way to model security and privacy
protocols, and process calculi have indeed been used extensively to formally de-
fine security properties and verify cryptographic protocols [65]. The following
subsections describe examples of this.
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2.3.1 Communicating Sequential Processes

In 1996, Schneider and Sidiropoulos proposed a definition of anonymity in
CSP [71]. In CSP, systems are modeled in terms of processes that operate
independently and interact with each other to perform events solely by passing
messages. Events represent atomic communications or interactions. Processes
are described in terms of the events that they may engage in. CSP is purely
non-deterministic and has no notion of probability.

In the Schneider and Sidiropoulos model, anonymity is concerned with pro-
tecting the identity of users with respect to particular events or messages. They
consider CSP trace semantics and use features of CSP to model anonymous
message sending: parallel concurrent processes represent the anonymity set,
and hidden events represent anonymous message sending (in theory, hiding an
event makes it unobservable). If the sequences of events that are observable to
an attacker are identical for any run (since the anonymous event was hidden),
the result of the anonymous event is considered unlinkable to a specific process.

A = {i.x|i 2 USERS}

A is the set of events that are supposed to be anonymous, and, therefore, will be
hidden. An event i.x is composed of its content x and the identity i of the agent
that communicates it. USERS represents the users who want to communicate
anonymously. Some process P provides anonymity if an arbitrary permutation
PA of the events in A, applied to the observables of P , does not change the
observables:

PA(Obs(P )) = Obs(P )

The authors demonstrate their model in automatic verification of the anonymity
provided by the Dining Cryptographers protocol, using the Failure Divergence
Refinement model-checking tool for CSP state machines.

2.3.2 ⇡-calculus

⇡-calculus is a process calculus originally developed by Milner, Parrow and
Walker as a continuation of CCS [56]. Its purpose is to describe concurrent
systems whose configuration may change during execution. The main di↵er-
ence between ⇡-calculus and earlier process calculi is that the former allows the
passing of channels as data through other channels. This feature, called mobil-
ity, allows the network to change with interaction; i.e., it allows that topology
changes after some input.

⇡-calculus can be used to represent processes, parallel composition of pro-
cesses, synchronous communication between processes through channels, cre-
ation of new channels, replication of processes and non-determinism. Prob-
abilistic ⇡-calculus also allows representation of probabilistic aspects. In ⇡-
calculus there are two basic actions:
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“c!x” : send value x on channel c (output action).
“c?x” : receive value x on channel c and bind it to the name x

(input action).

2.3.3 µCRL / mCRL2

Chothia, Orzan, Pang and Dashti proposed a framework for automatically
checking anonymity based on the process-algebraic specification language µCRL,
which is based on Bergstra’s ACP [19]. The authors introduce the notions of
player anonymity and choice anonymity. Player anonymity refers to the situ-
ation where an attacker observed a certain event (e.g. a choice), and wants to
link that event back to the originating subject(s). Choice anonymity refers to
the situation where an attacker observed a subject, and wants to know which
event(s) belong(s) to that subject.

The authors take the view that when participants in a (group) protocol
wish to remain anonymous the authors wish to hide parts of their behavior
and data; and state that a group protocol can be written as a parallel compo-
sition of participants and an environment process. Here, P and Q are process
models written in µCRL, with P representing the player behavior and Q the
environment (made up of entities that ’oversee’ the protocol):

Protocol(x) = P
1

(x
1

) k P
2

(x
2

) k ... k Pn(xn) k Q(n)

Here x = (x
1

, x
2

, ..., xn) is the choice vector of possible choices from a known
domain; anonymity refers to the link between this value and the identity
of the participant using it. The authors provide the following definitions of
anonymity:

Choice indistinguishability: Let Protocol be the specification of
a protocol, v

1

and v
2

two choice vectors, and Obs an observer set.
The set of all possible choice vectors is denoted by CVS. Then the
relation ⇡Obs: CVS⇥ CVS is defined as:

v
1

⇡Obs v2 i↵ ProtocolObs(v1) ⇡ ProtocolObs(v2).

Choice anonymity degree: The choice anonymity degree ( cad)
of participant i w.r.t. an observer set Obs under the choice vector
x is:

cadx(i) = |{c 2 Choices, 9v 2 CVS such that vi = c
and v ⇡Obs x and 8j 2 Obs.vj = xj}|

where | · | denotes the cardinality of a set, Choices is the set of all
possible choices, CVS is the choice vector set, v = hv

1

, ..., vni and
x = hx

1

, ...xni. We define the choice anonymity degree of partici-
pant i w.r.t. Obs as
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cad(i) = minx2CVS

cadx(i)

Player anonymity degree The player anonymity degree (pad) of
secret choice c, in a protocol with n players, w.r.t. an observer set
Obs and the choice vector x is:

padx(c) = |{i 2 {1, ..., n} \ Obs, 9v 2 CVS such that
vi = c and v ⇡Obs x and (8j 2 Obs.vj = xj)}|.

The player anonymity degree of secret choice c w.r.t. an observer
set Obs is

pad(c) = {0,minx2CVS

pad

x

(c)>0

padx(c), otherwise

These definitions allow a precise way of describing the di↵erent ways that
anonymity can break down, e.g. due to colluding insiders.

2.3.4 Other developments

Bhargava and Palamidessi proposed a notion of anonymity based on conditional
probability, called probabilistic anonymity. The authors take into account both
probability and non-determinism [7] and provide a mathematically precise def-
inition by applying probabilistic ⇡-calculus.

Deng, Pang and Wu proposed a probabilistic process calculus for describing
protocols ensuring anonymity, and a notion of relative entropy to measure the
degree of anonymity that can be guaranteed [25]. The authors quantify the
amount of probabilistic information an anonymity protocol reveals and take
both a priori and a posteriori knowledge into account, i.e. both knowledge that
the attacker has about a system and its users beforehand, and the knowledge
that the attacker learns from observing the protocol execution.

Deng, Palamidessi and Pang demonstrated the use of PRISM/PCTL for
automatic verification of the notion of weak anonymity [24]. Weak refers to
the notion that some amount of probabilistic information may be revealed by
a protocol, e.g. through presence of attackers who interfere with the normal
execution of the protocol or through some imperfection of the internal mech-
anisms. The authors study the degree of anonymity that a protocol can still
ensure, despite the leakage of information.

Hasuo and Kawabe proposed anonymity automata as a means to provide
simulation based proof of the notion of probabilistic anonymity introduced by
Bhargava and Palamidessi [36].

2.4 Epistemic logic

Logic investigates and classifies the structure of arguments. Modal logic allows
arguments with modalities such as necessity and possibility. Epistemic logic is
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a form of modal logic that is concerned with propositions of knowledge, uncer-
tainty and ignorance. To anonymity, epistemic logic for multi-agent systems is
most relevant. Epistemic logic extends propositional logic by adding an oper-
ator K to express the knowledge held by an agent (we use the terms agent and
subject interchangeably). It is thereby possible to make statements such as:

Ksp : “subject s knows proposition p (and that it is true).”
Ks¬p : “subject s knows that proposition p is false.”
¬Ksp : “subject s does not know proposition p.”

¬Ks¬p : “subject s does not know that proposition p is false.”

Anonymity of an agent is defined as the uncertainty of the observer regard-
ing a particular proposition which models sensitive information belonging to
that agent. Epistemic analysis of multi-agent communication consists of [82]:

1. representing the initial knowledge or beliefs of the agents in a semantic
model (e.g. in a so-called Kripke structure [46] using labels for individual
agents and valuations for states);

2. representing the operations on the knowledge or beliefs of the agents as
operations on semantic models;

3. model checking, to see if given formulas are true in the models that result
from given updates.

Syverson and Stubblebine proposed the use of group principals as an approach
to model anonymity in epistemic logic of multi-agent systems [78]. This means
that knowledge can be modeled as a property of a group, rather than of an
individual agents. Four types are proposed: a collective group principal that
is expressed as ?G (what this group knows is what is known by combining
the knowledge of all the group members), an and-group principal that is ex-
pressed as &G (what this group knows is what is commonly known by all of
its members, e.g. the common denominator), the or-group principal that is
expressed as �G (what this group knows is what at least one member of the
group knows) and the threshold group principal that is expressed as n � G
(what this group knows is anything known by any collective subgroup con-
tained in G of cardinality at least n). They apply a small formal language to
define anonymity properties ((� n)-anonymizable, Possible Anonymity, ( n)-
suspected, (� n)-anonymous and Exposed) using the group principals concept,
specify an anonymity protocol similar to the Anonymizer.com anonymous web
proxy service and assess the protocol against the anonymity properties. This
work considers only possibilistic aspects.

Halpern and O’Neill proposed an alternative definition of anonymity using
epistemic logic of multi-agent systems [33]. The authors build on earlier work in
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which a runs and systems framework was proposed for the analysis of security
systems [34]. Anonymity is defined as the absence of specific knowledge at
the observing agent about the anonymous agent and the actions the agent
performs. This work considers probabilistic aspects. The authors include the
following definitions, where Prj is a probability assigned by the attacker based
on observations (i.e., assigned a posteriori), to the possibility ✓ that agent i
executed action a):

↵-anonymous: Action a, performed by agent i, is ↵-anonymous
with respect to agent j if I ✏ Prj [✓(i, a)] < ↵.

Strongly probabilistically anonymous: Action a, performed by
agent i, is strongly probabilistically anonymous up to IA with respect
to agent j if for each i0 2 IA, I ✏ Prj [✓(i, a)] = Prj [✓(i, a)].

Van Eijck and Orzan proposed the use of Dynamic Epistemic Logic (DEL)
to model anonymity [82]. DEL distinguishes itself from other epistemic logics
by the introduction of action models, which are Kripke structures describing
information updates corresponding to various forms of communications [46].
These action models allow more intuitive specification, or even visualization,
of the flow in a knowledge program, thus making it easier to express complex
concepts like security and anonymity [82]. The authors propose a DEL veri-
fication method, provide automata-based tooling based on the µCRL toolset
and the Construction and Analysis of Distributed Processes (CADP) model
checker, and apply them to verify anonymity within the Dining Cryptogra-
phers and FOO92 protocols.

2.5 k-Anonymity

Over a decade ago, Sweeney proposed k -anonymity, a non-probabilistic met-
ric for anonymity concerning entries in statistical databases such as released
by data holders for research purposes [76, 77]. Sweeney’s interest is in re-
identifiability of persons based on their entries in such databases, e.g. through
inferences over multiple queries to the database or linking between di↵er-
ent databases (as depicted in Figure 2.2). A statistical database provides
k -anonymity protection if the information for each person contained within
cannot be distinguished from at least k � 1 ‘other individuals who appear in
the database.

Sweeney applies set-theory to formalize the notions of a table, rows (or ‘tu-
ples’) and columns (or ‘attributes’), and the quasi-identifier concept introduced
by Dalenius [21]. A quasi-identifier is a set of attributes that are individually
anonymous, but in combination can uniquely identify individuals. Sweeney
defines ‘quasi-identifier’ as follows [77] (note: throughout this thesis, we use
‘quasi-identifier’ in the less formal definition provided in Section 1.2):
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Ethnicity
Visite date
Diagnosis
Procedure
Medication
Total charge

ZIP
DoB
Sex

Medical Data

Name
Address
Date registered
Party affiliation
Data last voted

Voter List

Figure 2.2: Linking to re-identify data [76]

Attributes. Let B(A
1

, ..., An) be a table with a finite number of
tuples. The finite set of attributes of B is {A

1

, ...An}.

Quasi-identifier. Given a population of entities U , an entity-
specific table T (A

1

, ..., An), fc : U ! T and fg : T ! U 0, where
U ✓ U 0. A quasi-identifier of T , written as Qt, is a set of at-
tributes {Ai, ..., Aj} ✓ {A

1

, ..., An} where: 9pi 2 U such that
fg(fc(pi)[Qt]) = pi.

k-Anonymity. Let RT (A
1

, ..., An) be a table and QIRT be the
quasi-identifier associated with it. RT is said to satisfy k-anonymity
if and only if each sequence of values in RT [QIRT ] appears with at
least k occurrences in RT [QIRT ].

The k -anonymity model assumes a global agent to calculate the metric. It also
depends on the data holder’s competence and willingness to correctly identify
and work around quasi-identifiers. k-Anonymity protects against the ‘oblivi-
ous‘ adversary targeting anyone (re-identifying anything he can, hoping to get
lucky) as well as the adversary targeting a specific individual. One of the limi-
tations of the original k-anonymity model is that it does not take into account
the situation where the sensitive attribute has the same value for all k rows
and is revealed anyway. l-Diversity was introduced to address this by requiring
that, for each group of k-anonymous records in the data set, at least l di↵er-
ent values occur for the sensitive column [50]. Further developments included
t-closeness, m-invariance, �-presence and p-sensitivity [10, 48, 59, 90]. Applica-
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tions of k-anonymity to communication anonymity in mobile ad-hoc networks
and overlay networks have been explored in [84, 89].

[49] provides a probabilistic notion of k-anonymity: a dataset is said to be
probabilistically (1��, k)-anonymous along a quasi-identifier set Q, if each row
matches with at least k rows in the universal table U along Q with probability
greater than (1 � �). The authors also found a relation between whether
a set of columns forms a quasi-identifier and the number of distinct values
assumed by the combination of the columns. (1� �, k)-anonymity is obtained
by solving 1-dimensional k-anonymity problems, avoiding the so-called ‘curse
of dimensionality‘ that refers to problems arising from sparsity when data is
in high dimensional space, e.g. “the exponential number of combinations of
dimensions [that] can be used to make precise inference attacks” [1]. (1 �
�, k)-Anonymity protects against the oblivious adversary, but claims to be
insu�cient against the adversary targeting a specific individual.

[35] reflects on k-anonymity by introducing the M -score measure, or ‘mis-
useability weight‘, representing the sensitivity level of the data of each table
an individual is exposed to — and, by extension, the harm that misuse of that
data can cause to an organization if leaked by employees, subcontractors and
partners.

Malin and Sweeney proposed a formal model of a re-identification prob-
lem that pertains to genomic data [51]. This model builds on the ideas from
k-anonymity. The authors provide algorithms of re-identification that can be
applied to systems handling genomic data, as tests of privacy protection capa-
bilities.

Narayanan and Shmatikov demonstrated new statistical de-anonymization
attacks against the publicly released Netflix Prize data set containing de-
identified movie ratings of about 500,000 subscribers of Netflix [58]. The au-
thors showed that, given a little prior knowledge of a certain subscriber, it is
possible to identify, with high certainty, records related to that subscriber in
the anonymized data set. The authors show that their findings apply in general
to multi-dimensional microdata.

2.6 Discussion

This Chapter presented a study of literature on the analysis of anonymity.
Four directions of research were distinguished: information theory, process
calculus, epistemic logic and k-anonymity. The analysis of anonymity may
involve deterministic, non-deterministic and probabilistic aspects, depending
on the context in which it is discussed and the purpose it is supposed to serve.
For any system that involves human input, modeling anonymity would involve
notions of angelic and demonic non-determinism.

Which of the directions we should choose, considering our problem at hand
depends on whether anonymity only needs to be quantified or also speci-
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fied/proven. The information-theoretic metrics provide a practical and rela-
tively lightweight approach to measure the level of anonymity that anonymiz-
ing systems provide in di↵erent environments and under di↵erent constraints,
but cannot be used to specify an anonymizing system or proof (predict) that it
provides any anonymity property. Process algebra and logic can be used for the
latter, but, to our knowledge, do not provide means to quantify anonymity. In
the literature that was reviewed on process algebra and epistemic logic, aspects
that either cannot be expressed, or are very di�cult to express are typically left
out in the abstraction that are then examined — even though some of those
aspects might be relevant for accurately understanding anonymity.

Because our primary interest is data anonymity, and we seek quantification
rather than formal proofs, we decide that k-anonymity is the most relevant
model for us. In Chapter 3, we will describe a large-scale experiment to see
how k behaves in two real policy research databases in the Netherlands, and
proceed to propose new methods and techniques to make predictions about
data anonymity. By doing that, we establish the case for doing quantitative
research on identifiability, as set out in Chapter 1 — keeping the questionnaire
example in mind, but seeking relevance to the processing of personal data in
general.



3 An empirical study of
quasi-identifiers

Throughout this thesis we will develop techniques to measure and predict
anonymity. In this Chapter1 we first perform an empirical analysis to examine
how identifiability may work out in practice for a range of example quasi-
identifiers selected either by observed presence in real systems, by expectancy
of the likeliness of presence, or simply by our curiosity for quantifying how a
certain combination of information would (not) be re-identifying.

3.1 Introduction

To examine how problems of re-identifiability may work out in practice, we
decide to experimentally probe the re-identifiability of Dutch citizens for quasi-
identifiers found in real-world data sets. We analyzed real registry o�ce data
of Dutch citizens, gathered from municipalities.

A seminal work on re-identification was done by Sweeney [76, 77]. Using
1990 U.S. Census summary data, she established that 87% of the US popula-
tion was uniquely identifiable by a quasi-identifier (QID) composed of three
demographic variables [75, 76]:

Definition 3.1 QIDexample = { Date-of-Birth + gender + 5-digit ZIP }
1This Chapter is based on M. Koot, G. van ’t Noordende and C. de Laat, A Study on the

Re-Identifiability of Dutch citizens, Electronic Proceedings of HotPETS 2010, July 2010 [45].

27
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In Massachusetts (U.S.) the Group Insurance Commission administers health
insurances to state employees. Sweeney legitimately obtained a de-identified
data set containing medical information about Massachusetts’ employees from
them, including details about ethnicity, medical diagnoses and medication [76].
The data set contained the variables described in QIDexample. Sweeney also
legitimately obtained the identified 1997 voter registration list from the city
of Cambridge, Massachusetts, which contained the same variables. By linking
both data sets, it turned out to be possible to re-identify medical records,
including records about the governor of Massachusetts at that time.

Recalling Section 2.5, Sweeney proposed k -anonymity, a test asserting that
for each value of a quasi-identifier in a data set, at least k records must exist
with that same value and be indistinguishable from each other. This introduces
a minimal level of uncertainty in re-identification: assuming no additional in-
formation is available, each record may belong to any of at least k individuals.

In a paper revisiting Sweeney’s work [32], Golle observes a di↵erence be-
tween his results and Sweeney’s results. Golle states he was unable to explain
that di↵erence due to a lack of available details about the data collection and
analysis involved in Sweeney’s work. In particular, in Golle’s study of the 2000
U.S. Census data, only ⇠63% of U.S. citizens turned out to be uniquely identi-
fiable, as opposed to ⇠87% that Sweeney determined by studying the 1990 U.S.
Census data. It remains unclear whether the di↵erence should be attributed to
inaccuracies in the source data, intermediate changes in the ZIP code system,
or something else.

In this Chapter, we analyze the identifiability of Dutch citizens by look-
ing at demographic characteristics such as postal code and (partial) date of
birth. By ‘citizen’ we refer to a person who is registered as an inhabitant of the
Netherlands. We examine the re-identifiability only in the context of linking
the data sets that are described, and not using any additional outside informa-
tion. We limit ourselves to quasi-identifiers that we believe are most likely to be
found in (identified) data sets elsewhere, based on commonly collected demo-
graphics. For two real-life data sets, the National Medical Registration (Dutch:
“Landelijke Medische Registratie”, or “LMR”) and Welfare Fraud Statistics
(Dutch: “Bijstands Fraude Statistiek”, or “BFS”), we provide an assessment
of two specific quasi-identifiers; many more quasi-identifiers exist in those data
sets, involving e.g. ethnicity and marital status, but these are not discussed
in this thesis. By using Dutch registry o�ce data, we are confident that our
results are likely to be very accurate, as we will argue in Section 3.2.3. That
data is not collected via a census, but exists as a result of Dutch governmental
administrative processes that citizens cannot opt out from. The registry o�ces
are periodically subjected to audits that require very high data accuracy, which
is tested via samples.

This Chapter is structured as follows: Section 3.2 describes our approach;
Section 3.3 lists the results; and Section 3.4 discusses the results.
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3.2 Background

In 2009, the Netherlands consisted of 12 provinces and 441 municipalities of
varying size [14]. A municipality is an administrative region that typically spans
several villages and cities. Municipal registry o�ces are the o�cial record-
keepers of persons residing in the Netherlands, and maintain identified data
about them. De-identified data about individual citizens is available in a num-
ber of research databases. To illustrate our analysis we picked two, which we
describe below. In Section 3.3 we assess, amongst others, re-identifiability of
entries in these data sets.

3.2.1 Example data sets

The Dutch National Medical Registration (LMR) is a data collection program
established in 1963, in which hospitals in the Netherlands participate by pe-
riodically sending in copies of medical and administrative information about
hospital admissions and day care treatment. Example purposes of the LMR
are the analysis of the e↵ects of treatment, performance comparison between
hospitals, and epidemiological studies. The LMR is currently managed by the
Dutch Hospital Data foundation2. Statistics Netherlands, the Dutch organi-
zation for conducting statistical studies on behalf of the Dutch government,
also receives annual copies of the full LMR data set for research purposes [15].
External researchers can currently request access to the records collected dur-
ing 2005 and 2007 [11, 13]. These data sets contain only records about Dutch
citizens; records about other patients are omitted. Each record in the LMR
describes the hospital admission or day care treatment of a single individual,
and multiple records may be present per individual. The 2005 and 2007 data
sets each contain approximately 2.5 million records.

The Dutch Welfare Fraud Statistics (BFS) data set located at Statistics
Netherlands contains records about investigations on suspected welfare fraud
of Dutch citizens [12]. Each record in the data set maps to a single, completed
investigation, and multiple records may be present per person. The information
in the data set is provided by municipalities. Between 2002 and 2007, the
average number of records (cases) per year was 38,1613. The BFS data set
contains information at a di↵erent level of granularity than the LMR data set,
which is the reason we selected it as a second example. For example, the LMR
data set contains information about postal code, whereas the BFS data set
does not.

Re-identified records from the BFS data set could be abused to embarrass
or discriminate citizens that have been subject of fraud investigation. Similarly,
re-identified records from the LMR data set could be abused to embarrass or

2
http://www.dutchhospitaldata.nl

3Source: http://statline.cbs.nl
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discriminate people based on medical history or medical conditions, potentially
negatively impacting job or insurance prospects. Such consequences are at the
disposal of the person possessing the (re-)identified records.

3.2.2 Approach and terminology

Recalling Section 1.2: a data set containing information about persons is said
to be de-identified if ‘direct’ identifiers such as Social Security Numbers are
omitted. A quasi-identifier is a variable or combination of variables which,
although perhaps not intended or expected to identify individuals, can in prac-
tice be used for that purpose. A quasi-identifier may unambiguously identify
a single individual, or reduce the number of possibilities to some small set of
k individuals, the anonymity set [64]. A de-identified data set containing one
or more quasi-identifiers can be re-identified by linking records to an identified
data set containing the same quasi-identifying variable(s).

We assessed the (re-)identifiability of Dutch citizens by using quasi-identifiers
composed of information about postal code, date of birth and gender informa-
tion. We used registry o�ce data of approximately 2.7 million persons, ⇠16%
of the total population, obtained from 15 of 441 Dutch municipalities. The
15 municipalities and number of citizens are shown in Table 3.1. The sample
contains small, mid-size and large municipalities. Although this selection is
not random (we selected by number of citizens) or necessarily representative
for the whole population, we considered the selection appropriate for our anal-
ysis, since it enables us to assess whether di↵erences in re-identifiability are
observable for small municipalities compared to large municipalities that con-
tain a city, for example. The municipalities we selected are located in various
parts of the country in such a way that there is no obvious bias due to geo-
graphical location of the municipalities in the countries — although the largest
Dutch cities, Amsterdam, Rotterdam, and Den Haag, are located in the west of
the Netherlands which is the most densely populated area of the Netherlands,
known as “Randstad”.

We requested a (nameless) listing of gender, full postal code and full date of
birth of all citizens of 30 municipalities, and eventually obtained records of 15
municipalities, totalling approximately 2.7 million citizens. The remainder of
this Chapter is based on analysis of this data. We distinctly discuss data only
at municipal level; i.e. ‘Amsterdam’ refers to the municipality of Amsterdam
rather than the city of Amsterdam.

We primarily focus on quasi-identifiers that match the LMR and BFS
examples. The results, however, apply to any data set that contains these
quasi-identifiers. We did not attempt to obtain access to data from the actual
data sets, because for our purposes it su�ces to know which possible quasi-
identifying variables they contain, and the latter can be learned from public
documents [11, 12, 13].



3.2. BACKGROUND 31

Table 3.1: Municipalities included in our study (ordered by number of citizens)

Municipality # of citizens
Amsterdam 766,656
Rotterdam 591,046
Den Haag 487,582
Utrecht 305,845
Nijmegen 161,882
Enschede 156,761
Arnhem 147,091
Overbetuwe 45,548
Geldermalsen 26,097
Diemen 24,679
Reimerswaal 21,457
Enkhuizen 18,158
Simpelveld 11,019
Millingen a/d Rijn 5,915
Terschelling 4,751

TOTAL: 2,774,476

3.2.3 Data quality

Transactions between the Dutch government and Dutch citizens rely upon mu-
nicipal registry o�ces as source of data about citizens — including the transac-
tion of passport issuance. Registry o�ce data is not free of error: data may be
inconsistent with reality due to e.g. failure of citizens to report changes timely
and truthfully, typographical errors and software errors [60]. The registry of-
fices are required to undergo a periodical audit, which includes an integrity
check of a random sample of the electronic person records. Each record from
that sample is matched against other o�cial files associated with the person
whom the record is about, such as birth certificates. Each variable containing
an incorrect value is counted as a single error, and the maximum allowed rate
for errors in ‘essential’ fields like DoB and postal code is 1% of the sample set
size: to pass the test, a 100-record sample cannot contain more than 1 error
in essential fields. The sample size depends on the municipality size. During
the 2002-2005 audit cycle, 339 of the 370 (92%) audited municipalities passed
this test [60]. This suggests that Dutch registry o�ces are generally a reliable
source of data. During our own data sanity checks we removed 11 records con-
taining a postal code from outside the sampled municipalities, as those records
would have caused false outliers4; the remainder passed all sanity checks.

4These cases may be related to moving citizens, e.g. pending handover of data between
municipalities.
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3.2.4 Postal codes in the Netherlands

In the Netherlands, a postal code consists of a four-digit number and a two-
character extension — e.g. “1098 XG”, the postal code of our institution.
The four-digit number is referred to as ‘4-Position PostalCode’ (PC4 ), and is
located in exactly one town (city, village). A town may be divided into multiple
PC4-regions: for example, our data contains eighty di↵erent PC4-regions for
the city of Amsterdam, “1098” being one of them.

The two-character extension indicates a street, but often also a specific odd
or even range of house numbers within that street. The full postal code is
referred to as ‘6-Position PostalCode’ (PC6). A combination of full (PC6 )
postal code and house or P.O. box number uniquely indicates a postal delivery
address in the Netherlands.

3.3 Results

This Section describes the results of our analysis. Section 3.3.1 describes an
overall analysis of our input data. From the result data it becomes clear what
combinations of variables can be used to single out individuals or small groups
of citizens, and which combinations pose less of a privacy risk in that sense.
Section 3.3.2 describes the potential re-identifiability of citizens in the LMR
data set. Section 3.3.3 analyses the potential re-identifiability of citizens in
the BFS data set. We use the following notations: QID=Quasi-IDentifier ,
DoB=Date of Birth, YoB=Year of Birth and MoB=Month of Birth.

By ‘quasi-identifier’ we refer to abstract variables, by ‘quasi-identifier value’
to a valuation of those variables. We use rounded values for the sake of read-
ability. For each quasi-identifier, we counted the number of di↵erent (distinct)
values in the data — this is the number of anonymity sets; the number of people
sharing a specific quasi-identifier value represents the anonymity set size.

In addition to mean values, we provide quartiles and min-max values to
give an indication of how a quasi-identifier maps citizens in anonymity sets of
rather diverse or rather similar size5. We chose quartiles as a means to indicate
the value distribution while maintaining some brevity and readability of tables.
Another choice could have been made (e.g., for deciles or percentiles), however,
none has a definite advantage over the other. By using quartiles we can state

5The lower (1st) quartile is the value separating the lower 25% of the values; the median
value (2nd quartile) separates the higher half of the values from the lower half; the upper
(3rd) quartile separates the higher 25% of the values. To illustrate: given a population of
500 persons, both (k=100,k=100,k=100,k=100,k=100) and (k=1,k=1,k=1,k=1,k=496) are
possible outcomes that have a mean value of k = 100, while both sets are obviously very
di↵erent. For the former set, all three quartiles are 100, as are both the minimum and
maximum: all anonymity sets have size k = 100. For the latter set of numbers, minimum
value and all quartiles are 1, but the maximum value is 496: this shows that the distribution is
skewed. In our context, the latter means that a quasi-identifier maps citizens into anonymity
sets of di↵erent sizes.
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Table 3.2: Anonymity set size k for various (potential) quasi-identifiers

Quasi-identifier: # of sets Min. 1st Qu. Median Mean 3rd Qu. Max.
PC4 388 2 3,278 7,090 7,188 10,300 22,330
PC6 66,883 1 24 35 41 50 1,322
PC4+DoB 2,267,700 1 1 1 1 1 42
PC6+DoB 2,759,422 1 1 1 1 1 5
PC4+gender 776 1 1,652 3,536 3,594 5,151 11,730
PC6+gender 133,012 1 11 18 21 25 954
gender+YoB 221 1 5,219 14,570 12,550 19,740 25,580
gender+YoB+MoB 2,699 1 397 1,177 1,028 1,594 2,326
gender+YoB+MoB+PC4a 635,679 1 2 3 4 6 40

gender+YoB+MoB+municip.b 34,790 1 6 18 80 96 733
gender+DoB 71,318 1 21 40 39 54 571
gender+DoB+PC4 2,488,828 1 1 1 1 1 22
gender+DoB+PC6 2,766,475 1 1 1 1 1 4
town+gender 134 1 222 1116 20,700 3259 347,100
town+YoB 5,642 1 6 29 492 101 14,270
town+YoB+MoB 49,207 1 2 5 56 20 1,262
town+DoB 463,134 1 1 2 6 7 419
town+YoB+gender 10,492 1 4 17 264 60 7,515
town+YoB+MoB+gender 83,172 1 1 3 33 14 695
town+DoB+gender 697,875 1 1 2 4 5 226

aQIDA, see Section 3.3.2.
bQIDB , see Section 3.3.3.

properties of the distribution of anonymity set sizes such as “at most 25% of
the anonymity sets are smaller than <1st quartile>” and “at most 50% of the
anonymity sets are smaller than <median>”.

3.3.1 Analysis over aggregated data

This Section describes the results of an analysis of the combined data of the
citizens of all municipalities listed in Table 3.1. By including both small and
large municipalities, covering the smallest villages (the smallest having two
inhabitants) and largest cities (the largest having 684,926 inhabitants) in the
Netherlands, the minimum and maximum anonymity set sizes represent the
worst and best cases we expect to be found anywhere in the Netherlands.
Furthermore, the statistics over the combined data indicate how strongly iden-
tifiable a quasi-identifier is for the overall population.

Throughout the next subsections, k denotes the anonymity set size; k = 1
means that some quasi-identifier value unambiguously identifies some individ-
ual, k = 2 means that the value is shared by two individuals, and so on.
Table 3.2 shows the statistical characteristics of anonymity set size k for vari-
ous (potential) quasi-identifiers. The column ‘# of sets’ contains the number
of di↵erent values present in our data for a given quasi-identifier, i.e., the num-
ber of anonymity sets. Generally, the higher this number, the weaker the level
of privacy, because the anonymity sets will tend to be smaller. The min/max
values denote the size of the smallest and largest anonymity set.

As an example, the median anonymity set size of PC6 is 35, the minimum



34 CHAPTER 3. EMPIRICAL STUDY

Table 3.3: Number of Dutch citizens per anonymity set size, for various quasi-
identifiers

Quasi-identifier: k = 1 k  5 k  10 k  50 k  100
PC4 0 9 19 345 996
PC6 429 6,109 25,103 1,459,939 2,354,255
PC4+DoB 1,861,081 2,754,465 2,765,932 2,774,476 -
PC6+DoB 2,744,653 2,774,476 - - -
PC4+gender 4 27 103 889 2,555
PC6+gender 1,854 31,262 184,803 2,342,242 2,629,017
gender+YoB 5 14 53 250 516
gender+YoB+MoB 55 356 712 4,478 9,674
gender+YoB+MoB+PC4a 137,035 279,100 2,196,950 2,774,476 -

gender+YoB+MoB+municip.b 2,186 22,565 59,597 244,152 619,671
gender+DoB 2,014 14,506 40,322 1,392,622 2,725,472
gender+DoB+PC4 2,240,461 2,765,067 2,772,205 2,774,476 -
gender+DoB+PC6 2,758,578 2,774,476 - - -
town+gender 4 4 28 372 896
town+YoB 499 3,172 7,225 50,985 103,145
town+YoB+MoB 10,083 61,073 112,850 287,173 394,844
town+DoB 185,042 596,769 1,045,559 2,730,668 2,750,700
town+YoB+gender 1,153 7,195 16,333 102,018 150,135
town+YoB+MoB+gender 22,260 109,126 170,351 398,601 826,744
town+DoB+gender 288,409 1,029,601 1,813,559 2,750,669 2,764,050

aQIDA, see Section 3.3.2.
bQIDB , see Section 3.3.3.

size is 1 and the maximum size is 1,322. This means that at most half of the
values for PC6 have anonymity sets of sizes between 1 and 35, and that the
sizes of the anonymity sets in the upper half are between 35 and 1,322.

From the quartiles it becomes clear that some quasi-identifiers are partic-
ularly strong, by which we mean that a large portion of the anonymity sets
established by that quasi-identifier are of small size (e.g. k = 1 or k  5). For
example, for {PC4 + DoB}, Table 3.2 shows an anonymity set size of k = 1
for up to the 3rd quartile, meaning that 75% of the quasi-identifier values un-
ambiguously identify a citizen. Looking at the lower quartiles, it also becomes
clear that some quasi-identifiers are weaker identifiers: for {PC4}, only at most
25% of the sets are of size k  3, 278; for {gender + YoB}, at most 25% of the
sets are of size k  5, 219. Overall, it turns out that quasi-identifiers containing
both PC4 or PC6, as well as date of birth, are most identifying.

We were surprised to find that PC4 postal codes exist which are shared by
only two citizens: we had expected that PC4 codes always map to relatively
large numbers of citizens. Upon closer inspection, it appears that the data
is accurate: it represents the inhabitants of a new construction area in the
harbor of Rotterdam. These pioneering citizens turn out to be unambiguously
identifiable nation-wide by only their {PC4 + gender} or {town + gender} —
albeit only until other citizens o�cially move in.

Table 3.2 also clearly shows that adding the two-character extension to the
PC4 postal code strongly increases identifiability: the median anonymity set
size for {PC4} is 7,090, for {PC6} only 35.
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Whereas Table 3.2 focusses on the size distribution of the anonymity sets,
Table 3.3 shows the actual number of citizens found in those anonymity sets.
The larger the value in columns ‘k = 1’, ‘k  5’ and possibly ‘k  10’, the
larger the portion of the population that is covered by anonymity sets of those
(small) sizes and the stronger the quasi-identifier identifies citizens. The num-
bers confirm that {PC6 + DoB} is a strong identifier, because here nearly all
citizens have k = 1; {PC6} alone is not a strong identifier, because only a
very small portion of the citizens have k  10 (compared to k  50). We also
included columns for a few larger set sizes (k  50 and k  100) for illustrative
purposes. For example, only 896 out of 2.7 million citizens are identifiable to
a group of 100 by {town + gender}, so by themselves, those variables do not
pose a significant privacy risk for most citizens. For readability, we replaced
numbers by ‘-’ when the total population is reached at some k.

From the numbers for quasi-identifier {gender + DoB + PC6} it follows
that approximately 99.4% of the Dutch citizens in our data set (2,758,578
out of 2,774,476) can be unambiguously identified by {gender + DoB + PC6};
and lastly, it turns out that 67.0% (1,861,081 out of 2,774,476) can still be
unambiguously identified by {PC4 + DoB}.

3.3.2 Case: National Medical Registration

The LMR contains a large amount of information about hospital admissions and
day care treatment: amongst others, it contains fields describing the hospital,
the patient’s insurance type, diagnosis codes, the treatment that was provided
and the medical specialisms and disciplines involved [11, 13]. This information
could be privacy-sensitive and it is generally treated as such, even when de-
identified: i.e., access to the LMR and BFS data set is only granted to qualified
applicants, for specific purposes, under specific conditions of confidentiality —
Statistics Netherlands is very aware of privacy risk [88]. The LMR data set also
contains demographic data about the patient. In particular, the LMR contains
the following quasi-identifier:

Definition 3.2 QIDA = { PC4 + gender + YoB + MoB }

Our data contains 635,679 di↵erent anonymity sets for QIDA. We use kA to
denote the anonymity set sizes for this quasi-identifier. 137,035 people, ⇠4.8%,
are unambiguously identifiable by QIDA, that is, they are the only person
in the anonymity set, which thus has kA=1. Furthermore, we found 212,536
citizens to have kA = 2; 260, 244 to have kA = 3 and 282,644 to have kA = 4
(most common size). Table 3.4 lists the statistical properties of the size of the
anonymity sets established by this quasi-identifier. The municipality size is
included for quick reference.

The numbers show that there is no large di↵erence in anonymity between
citizens of di↵erent-sized municipalities: the range of the medians is 1–5. The
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highest median anonymity set size is found in Amsterdam, the lowest is found
in Terschelling. The latter means that half of the QIDA values found in Ter-
schelling unambiguously identify a citizen.

The municipality size (‘# of citizens’ ) and median anonymity set size (col-
umn ‘Median’ ) have a Pearson correlation coe�cient of .60. The single largest
anonymity set is found in Amsterdam and is of size 40. Based on the numbers
shown in Table 3.3, the total percentage of citizens identifiable to a group of
10 or less by this quasi-identifier is ⇠79.1% (2,196,950 out of 2,774,476).

Figure 3.1 visualizes the numbers in Table 3.4. Some large anonymity sets
exist as outliers, especially for larger municipalities, but overall anonymity is
approximately the same for all municipalities.

Note that there is a di↵erence in constraints between registry o�ce data and
the hospital admission data set: whereas the year of birth is allowed to be zero
by the Dutch registry o�ces — e.g. for immigrants about whom the date of
birth is not fully known—, the LMR requires it to be non-zero and be estimated
if unknown [79]. This means that LMR-records about a person who is o�cially
registered with zero year of birth (in our data set we only found 3) will not be
re-identified by quasi-identifiers involving the year of birth. On the other hand,
the quality of data from the LMR and BFS depends on their sources (hospitals
and municipalities); it is not asserted whether each record accurately represents
reality [11, 12, 13] – note that any mismatch (error) prevents linkability, and
thus improves privacy for the involved individual.

Table 3.4: Statistical summary of kA, divided by municipality (ordered by
median)

Municipality: # of citizens Min. 1st Qu. Median Mean 3rd Qu. Max.
Amsterdam 766,656 1 2 5 6 8 40
Rotterdam 591,046 1 2 4 5 6 33
Enkhuizen 18,158 1 2 4 4 6 20
Diemen 24,679 1 2 4 4 6 19
Den Haag 487,582 1 2 3 4 6 30
Utrecht 305,845 1 2 3 4 6 36
Enschede 156,761 1 2 3 4 5 31
Nijmegen 161,882 1 2 3 4 5 35
Arnhem 147,091 1 1 3 3 4 25
Millingen a/d Rijn 5,915 1 2 3 3 4 12
Simpelveld 11,019 1 1 3 3 4 12
Geldermalsen 26,097 1 1 2 2 3 16
Overbetuwe 45,548 1 1 2 3 4 18
Reimerswaal 21,457 1 1 2 2 3 11
Terschelling 4,751 1 1 1 1 2 10
OVERALL 2,774,476 1 2 3 4 6 40

3.3.3 Case: Welfare Fraud Statistics

In the BFS data set, we recognised the following as a potential quasi-identifier:

Definition 3.3 QIDB = { municipality + gender + YoB + MoB }
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Figure 3.1: Box-and-whisker plot showing anonymity set sizes kA, per munic-
ipality. Whiskers denote the minimum and maximum values; the boxes are
defined by lower and upper quartiles and the median value is shown.

Our data contains 34,790 di↵erent anonymity sets for QIDB . 2,186 people,
⇠0.07%, are unambiguously identifiable by QIDB . Furthermore, we found
3,552 citizens to have kB = 2; 5,064 to have kB = 3 and 5,508 to have kB =
4. The total percentage of citizens identifiable to a group of 10 or less is
⇠2.14% (59,597 out of 2,774,476). The single largest anonymity set is found in
Amsterdam and is of size 733.

Table 3.5 lists the statistical properties of kB per municipality. The num-
bers show that regarding the BFS, large di↵erences in anonymity exist between
citizens of di↵erent-sized municipalities: the range is 1–733. The highest me-
dian anonymity set size is 310, found in Amsterdam, the lowest is 2, found in
Terschelling. Municipality size and median anonymity set size have a Pearson
correlation coe�cient of .99; the median anonymity set size is rather constant
at ⇠0.04% (1/2,500) of the population size.

Figure 3.2 visually represents the numbers in Table 3.5. Note that the range
on the vertical axis is much larger than in figure 3.1. It is clear that citizens
from large municipalities tend to have much stronger anonymity than citizens
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from small municipalities, which is something to remember when dealing with
de-identified data about citizens from small municipalities.
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Figure 3.2: Box-and-whisker plot showing anonymity set sizes kB , per munici-
pality. Whiskers denote min-max values.

Table 3.5: Statistical summary of kB , divided by municipality (ordered by
median)

Municipality: # of citizens Min. 1st Qu. Median Mean 3rd Qu. Max.
Amsterdam 766,656 1 123 310 296 456 733
Rotterdam 591,046 1 118 259 228 333 486
Den Haag 487,582 1 89 219 188 277 460
Utrecht 305,845 1 48 110 121 179 398
Enschede 156,761 1 38 71 64 88 161
Nijmegen 161,882 1 36 68 66 92 213
Arnhem 147,091 1 30 66 60 87 138
Overbetuwe 45,548 1 13 21 20 28 52
Geldermalsen 26,097 1 7 12 12 16 34
Diemen 24,679 1 7 11 11 15 32
Reimerswaal 21,457 1 6 10 10 13 25
Enkhuizen 18,158 1 5 8 8 11 26
Simpelveld 11,019 1 3 5 5 7 17
Millingen a/d Rijn 5,915 1 2 3 3 4 12
Terschelling 4,751 1 1 2 3 3 10
OVERALL 2,774,476 1 6 18 80 96 733
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3.4 Discussion

This Chapter established the identifiability of Dutch citizens using information
about postal code, date of birth and gender. We studied real registry o�ce
data of approximately 2.7 million citizens, ⇠16% of the total population, ob-
tained from 15 of 441 Dutch municipalities of varying size. We assessed the
re-identifiability of records about these individuals in known data sets about
hospital admissions and welfare fraud.

It turns out that approximately 99.4% of the sampled population is unam-
biguously identifiable using PC6 postal code, gender and date of birth, and
67.0% by PC4 and date of birth alone. Regarding the quasi-identifier found in
the LMR data set, approximately 4.8% of the sampled population is unambigu-
ously identifiable and 79.1% is identifiable to a group of 10 or less. Regarding
the quasi-identifier found in the BFS data set, approximately 0.07% of the
sampled population is unambiguously identifiable and 2.14% is identifiable to
a group of 10 or less; for small municipalities, however, the anonymity set sizes
become much smaller and re-identifiability higher.

As far as we know, we are the first to study re-identifiability using authori-
tative registry o�ce data. Comparing to Sweeney [75, 76] and Golle [32], who’s
studies relied on census data, our study relies on data from the data source that
is authoritative during Dutch passport issuance, which is not prone to the in-
tricacies of survey-based data collection. We only cover a portion of the Dutch
citizens, ⇠16%, but are confident that the results for that portion are accurate.
For the quasi-identifiers we chose to analyze, we also provide the minimum and
maximum anonymity set sizes that can be expected to be found anywhere in
the Netherlands.

The results suggest that, considering the quasi-identifier in the National
Medical Registration data set, someone who is able to access registry o�ce
data can re-identify a large portion of records with relatively high certainty.
Considering the quasi-identifier in the Welfare Fraud Statistics data set, the
re-identification risk is generally lower, but strongly depends on municipality
size.

One could argue about the plausibility of the threat scenario underlying the
two cases we picked: we assume an adversary who is able to access non-public
records from both registry o�ces and Statistics Netherlands. Access to the
data sets at Statistics Netherlands, including the LMR and BFS data sets, is
only granted to qualified applicants, for specific purposes, under specific con-
ditions of confidentiality [88]. Thus, obtaining data may require an investment
that is disproportional to the expected gain of re-identifying records from these
particular data sets to begin with. We note, however, that our results apply to
any de-identified data set containing the assessed quasi-identifiers. For a data
set that does not contain other quasi-identifiers than those discussed in this
Chapter, our results provide an upper and lower bound of anonymity. Also,
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registry o�ces are not the only source for identified data, and any identified
database containing these quasi-identifiers with su�ciently large coverage of
the total population may be used; suitable data sets may also exist at, e.g.,
information brokers, marketing agencies and public transport companies. Be-
sides, preventing registry o�ce data itself from being used for re-identification
may be di�cult: the 441 municipalities are autonomous gatekeepers to their
citizen’s data and that citizen data is already necessarily exchanged on a regu-
lar basis for a variety of legitimate purposes [63]. It is di�cult to protect data
that has many legitimate users and uses.

These results are, by themselves, useful as input for privacy impact as-
sessments involving data about Dutch citizens. It remains a matter of policy
what value of k can be considered su�ciently strong anonymity for particular
personal information. Conceivably this is be estimated via regular risk cal-
culations, i.e., chances multiplied by impact, assuming that impact takes into
consideration aspects such as ‘misusability’ of the information, emotional harm,
social harm and other harm that may result from its disclosure.



4 E�cient probabilistic
estimation of
quasi-identifier
uniqueness

4.1 Introduction

In Chapter 3 we analyzed quasi-identifiers in two data sets containing infor-
mation about hospital intakes and welfare fraud. The quasi-identifier in the
hospital intake data set consisted of 4-digit postal code, gender, month of birth
and year of birth, and in the welfare fraud data set it contained the municipal-
ity rather than the 4-digit postal code. The objective of the study was to assess
the level of anonymity enjoyed by persons present in the data sets. The results
were roughly comparable to the results obtained by Sweeney in the U.S. For
example, 67.0% of the sampled population turned out identifiable by date of
birth and four-digit postal code alone, and 99.4% by date of birth, full postal
code and gender.

One of the common challenges in k-anonymity and its developments is the
recognition of quasi-identifiers (QIDs). The method we develop in this Chap-
ter1 provides a new way of e�ciently estimating the likelihood that a given set
of attributes will function as a perfect quasi-identifier, i.e., that each value of
a quasi-identifiers unambiguously identifies an individual. That quantification
may be useful as a worst-case metric in privacy impact assessments and policy

1This Chapter is based on M. Koot, M. Mandjes, G. van ’t Noordende and C. de Laat, Ef-
ficient probabilistic estimation of quasi-identifier uniqueness, Proceedings of NWO ICT.Open
2011, November 2011 [43].

41
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research.
Usually, QIDs are addressed after data has been collected, and each data

collection deals with QIDs for itself. In our scenario, a data collector (perhaps
Statistics Netherlands) collects data and publishes a single number representing
the heterogeneity of the QID distribution over the records in his table. That
number, the Kullback-Leibler distance that will be introduced shortly, repre-
sents the distribution skew in the prior data collections. Using that number,
our method allows future data collectors to predict properties of QIDs before
collecting data; and possibly use that information to decide on what (not) to
collect and possibly to decide what the impact of combining earlier-collected
data may have on privacy.

For QIDs consisting of personal attributes that do not change, such as date
of birth, or that rarely change, such as postal code, the method introduced in
this Chapter provides an e�cient approximation of the probability that every
(QID) value in a group of people unambiguously identifies an individual. An
entity such as Statistics Netherlands, which has access to enormous amounts of
data, might publish precomputed tables that data collectors can use to decide
what data (not) to collect. Chapter 7 will elaborate on this.

As a follow up to Chapter 3, the primary question this Chapter addresses
is: ‘Can we develop a methodology to determine the probability that all persons
in a group can be uniquely identified by quasi-identifier X? This can then
be used as a measure of anonymity. The main contribution of our work is
that we provide a sound technique to accurately approximate this probability.
We translate our question in terms of a birthday problem, and then rely on
probabilistic techniques.

The main problem is that, unlike in the classical birthday problem [57],
the probability distribution for many variables and thus for many QIDs is
non-uniform, i.e., not all possible values occur with equal frequency. This het-
erogeneity is dealt with by adjusting the outcome of the homogeneous birthday
problem (in which all outcomes are equally likely) by a measure of hetero-
geneity, the Kullback-Leibler distance [47]. As mentioned, the techniques used
are of a probabilistic nature; more specifically, we borrow elements from large-
deviations theory [23, 52].

It is emphasized that the stated question is of interest both to adversary
(‘which quasi-identifiers should I want?’) and the anonymous subject (‘which
quasi-identifiers should I avoid?’). Our method will be demonstrated using
demographic data from the Netherlands, but the approach can be applied to
any population.

The remainder of this Chapter is organized as follows. In Section 4.2 we
formally describe the problem in terms of a birthday problem with unequal
probabilities. Section 4.3 presents an approximation for the uniqueness prob-
ability under heterogeneity, where the deviation from the uniform situation is
captured by the Kullback-Leibler distance. In Section 4.4 we validate the ap-
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proximation, and use the approximation to run a number of experiments. The
Chapter is concluded in Section 4.5, by a discussion and outlook.

4.2 Problem

The problems we come across in this Chapter can be regarded as generalized
birthday problems. In the ‘classical’ birthday problem [28, 83] there are k
individuals, each of whom is assigned (uniformly, independently) a value from
the set {1, . . . , N}. It is a straightforward exercise in probability theory to check
that the probability that all values (‘birthdays’) are unique is given by

⇡
u

(k,N) =
N

N

N � 1

N
· · · N � k + 1

N
=

N !

(N � k)!Nk
.

However, things complicate in case the outcomes {1, . . . , N} are not equally
likely. To study this situation, suppose that Fi outcomes have probability ↵i/N ,
for i = 1, . . . , d (that is, there are d groups within which the probabilities are
uniform again). Here it is assumed that F

1

+ . . . Fd = N (each outcome is a
member of one group) and F

1

↵
1

+ . . . Fd↵d = N (the total probability is 1).
For this generalized birthday problem, it is not possible to write down a clean
expression for the uniqueness probability (although it can be evaluated numer-
ically in quite an e�cient way [41]). However, as we will show in this Chapter,
we succeeded in developing an accurate approximation. This approximation is
based on the Kullback-Leibler distance, which is a measure for heterogeneity
within the population. It turns out that the more heterogeneous the popu-
lation is, the lower the uniqueness probability. In addition, it is shown that
assuming all outcomes are equally likely (so that the above explicit formula can
be applied) leads to quite substantial estimation errors.

To simplify the exposition, we use a very simple quasi-identifier in our
examples: age. We experimentally assessed the quality of our approximation
using real data about the Dutch population: the distribution of age in all
Dutch municipalities, which vary in size (1k–750k citizens). Di↵erent from our
study in Chapter 3, the data we use here is publicly available from Statistics
Netherlands, so as to remove a threshold for those desiring to reproduce our
results2.

4.3 Methodology: birthday problems

As mentioned above, the uniqueness probability can be calculated straight-
forward in case all outcomes are equally likely. In this Section we present an
approximation for the situation where this is not the case, that is, the situation
in which probabilities of the outcomes 1, . . . , N di↵er from 1/N.

2Statistics Netherlands, StatLine: http://statline.cbs.nl
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4.3.1 Approximations for general birthday problems

In this subsection we describe a way to find an approximation for the uniqueness
probability in the non-uniform scenario. The approximation relies heavily on
the idea of ‘Poissonization’.
Approximations for the uniform case. We briefly describe a classical approxi-
mation for the uniform case (i.e., d = 1), and show that this approximation is
exact in a particular asymptotic regime. To this end, observe that

⇡
u

(k,N) = exp

 
k�1X

i=0

log

✓
1� i

N

◆!

⇡ exp

 
� 1

N

k�1X

i=0

i

!
⇡ exp

✓
� k2

2N

◆
. (4.1)

This approximation can be formally justified if k scales like
p
N : applying

‘Stirling’,

⇡
u

(a
p
N,N) =

N !

(N � k)!Nk

⇠ e�a
p
N

✓
1� ap

N

◆N�a
p
N

! e�
a

2

2 , (4.2)

where the convergence is due to Lemma 4.1, included at the end of this Chapter.
Plugging in a := k/

p
N indeed yields approximation (4.1).

Poissonization for the uniform case. We show that assuming that k is not
given but drawn from a Poisson distribution with mean k yields, remarkably
enough, the same asymptotic (4.2). To this end, suppose that the sample size is
Poisson distributed with mean k. An elementary conditioning argument yields
that this gives the uniqueness probability

⇡
Pois, u(k,N) =

NX

i=0

e�k k
i

i!

N !

(N � i)!N i
= e�k

✓
1 +

k

N

◆N

.

As before, an approximation of the type exp(�k2/(2N)) can be justified, be-
cause

⇡
Pois, u(a

p
N,N) = e�a

p
N

✓
1 +

ap
N

◆N

! e�
a

2

2 ,

applying Lemma 4.1.(ii). In other words, even though we randomize the num-
ber of samples, we obtain the same approximation.
The non-uniform case. We now consider the situation where Fi (for i =
1, . . . , d) of the outcomes have probability ↵i/N , with F

1

+ . . . Fd = N and
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F
1

↵
1

+ . . . Fd↵d = N . As argued earlier, if the ↵i are not uniform, then com-
puting the uniqueness probability ⇡(k,N) is not straightforward. The idea of
Poissonization does ease this task considerably, though, as we will show.

It is first observed that when sampling k times according to the mechanism
described above, the number of these samples that are from group i (with
i = 1, . . . , d) has a multinomial distribution with parameters k and (probability
vector) (↵

1

F
1

/N, . . . ,↵dFd/N)0. Suppose instead the number of samples from
group i is Poisson distributed with mean (↵iFi/N)·k (rather than the described
multinomial distribution). Then the uniqueness probability essentially reduces
to the product of the uniqueness probabilities within each of the d groups (use
independence!). Therefore, in self-evident notation,

⇡
Pois(k,N) =

dY

i=1

⇡
Pois, u

✓
↵iFi ·

k

N
, Fi

◆

⇡ exp

 
� k2

2N2

dX

i=1

↵2

iFi

!
, (4.3)

and then the idea is to approximate ⇡(k,N) by ⇡
Pois(k,N), as we did in the

uniform case. In [9, Thm. 4] this approximation was made precise, in the sense
that, with fi := Fi/N being the fraction of all individuals that is of type i, as
N ! 1,

⇡(a
p
N,N) ! exp

 
�a2

2

dX

i=1

↵2

i fi

!
.

4.3.2 Impact of non-uniformity

A perhaps naive idea could be to ignore the heterogeneity and to simply use the
‘homogeneous formula’ (4.1). In this subsection we show that such an approach
could lead to highly inaccurate estimates — evidently, the more heterogeneous
the population is, the less accurate such an approximation. To study this
e↵ect, we further asses the impact that non-uniformity has on the uniqueness
probability.

Uniform distribution maximizes uniqueness probability. The approximation
of the uniqueness probability for the non-uniform case is majorized by the
approximation for the uniform case. This can be explained as follows. First
observe that we need to prove that

Pd
i=1

↵2

i fi � 1, given that
Pd

i=1

fi =Pd
i=1

↵ifi = 1 (where it is noted that the minimum value 1 is attained when
all ↵i coincide). Let the random variable A have the value ↵i with probability
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fi. As variances are non-negative, we evidently have

dX

i=1

↵2

i fi = EA2 � (EA)2 = 1,

which proves our claim. The fact that the uniform distribution actually max-
imizes the uniqueness probability has been observed before, cf. [40, 69]. More
specifically, it means that all perturbations from the uniform distribution reduce
the uniqueness probability.

Distances between distributions. Observing that

exp(�a2

2

)

exp(�a2

2

Pd
i=1

↵2

i fi)
= exp

 
a2

2

dX

i=1

(↵2

i fi � 1)

!
,

we conclude that

1

2

dX

i=1

(↵2

i fi � 1)

is a measure for discrepancy between the uniform distribution and the non-
uniform distribution under consideration. There are several distance measures
between distributions, the most prominent perhaps being the Kullback-Leibler
distance [47]. Below we argue that, at least for small perturbations, our dis-
crepancy metric essentially reduces to the Kullback-Leibler distance.

Indeed, if ↵i is not too di↵erent from 1, the Kullback-Leibler distance with
respect to the uniform distribution, say , can be evaluated as follows. First
observe that

 =
dX

i=1

⇣
Nfi

↵i

N

⌘
log

0

B@
Nfi
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N
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1

N

1
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↵ifi log↵i.

Now let ↵i equal 1+�i" for " small;
Pd

i=1

↵ifi = 1 then entails that
Pd

i=1
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0. Using the Taylor expansion log(1 + x) = x� x2/2 +O(x3), it follows that
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Now replacing �i" by ↵i � 1, and using
Pd

i=1

↵ifi = 1, we arrive at the ap-
proximation, for " small:

 ⇡ 1

2

dX

i=1

(↵2

i fi � 1).

In other words,

⇡
u

(k,N)

⇡(k,N)
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exp
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�k2/2N

�

exp
⇣
�k2/2N ·
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⌘ ⇡ exp

✓
k2

N
· 
◆
.

As a consequence, we obtain the following elegant approximation for the unique-
ness probability in the heterogeneous case:

⇡(k,N) ⇡ ⇡
u

(k,N) · e�k2/N · ⇡ e�(

1
2+)k

2/N .

In other words, to approximate the uniqueness probability for the non-uniform
case, we have to take the uniqueness probability for the uniform case, and raise
it to the power . This , the Kullback-Leibler distance, measures the discrep-
ancy of the distribution relative to the uniform distribution. More specifically,
the larger , the more heterogeneous the distribution is, the smaller the unique-
ness probability. It is noticed that the approximation formula is consistent with
the one for the uniform case; then  = 0.

4.4 Experiments with demographic data

In this Section we run two sets of experiments: (i) experiments in which we
validate our approximation formula, as was deduced in the previous Section;
(ii) experiments in which we assess the impact of heterogeneity, where all com-
putations are based on our approximation formula.

4.4.1 Validation of the approximation formula

In our validation experiment we have considered the following setup, focusing
on the level of anonymity one has after revealing her or his age. Supposing
that a group of k individuals is considered, our objective is to determine the
probability that each of them has a unique age.

Now the key observation is that the distribution of age is in general not
uniform: some ages have a higher frequency within the population than others.
It means that we are in the heterogeneous setting of the previous Section.

Our experiments are based on the age distribution of all 428 Dutch munic-
ipalities that existed in 2010. For each of them we computed the Kullback-
Leibler distance ; let j be the Kullback-Leibler distance of municipality j.
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Figure 4.1: For all Dutch municipalities: the Kullback-Leibler distance
and the estimated uniqueness probability, when revealing age.
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Figure 4.2: For all Dutch municipalities: the Kullback-Leibler distance
and the estimated uniqueness probability, when revealing age and gen-
der.
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More specifically, with 'ij the fraction of the population with age i (for i
ranging between 0 and the maximum age, say M) in municipality j (where

obviously
PM

i=0

'ij = 1 for all j), we have

j =
MX

i=0

'ij log
'ij

1/(M + 1)
;

the 1/(M + 1) is the uniform density on {0, . . . ,M}. In our experiments we
took M = 94 (thus neglecting a tiny fraction of the population).

In our experiments we took k = 29, such that under uniformity we would
have a uniqueness probability ⇡

u

(29, 95) = 0.84%. The approximation of the

uniqueness probability pj for municipality j is therefore 0.84 · 10�2 · e�k2/N ·
j .

The accuracy of this approximation for municipality j can be validated by sam-
pling (independently) n

+

groups of size k from age distribution ('
0j , . . . ,'Mj),

and to check for each of these samples whether all individuals included are
unique (if yes, then increase counter n). Then the uniqueness probability of
municipality j can be estimated by p̂ := n/n

+

. To guarantee that this estimate
is su�ciently reliable, we should have that the ratio of confidence interval’s
half-width and the estimate (known as the relative e�ciency) is below some
predefined number r, say, 10%, which means that

t↵�(p̂)

p̂
< r,

where �(p̂) is the standard error of the estimate, which roughly equals

s
p̂(1� p̂)

n
+

⇡

s
p̂

n
+

,

and t↵ is the t-value corresponding to confidence ↵ (1.96 for ↵ = 0.95). An
easy computation shows that the number n

+

of experiments needed to make
sure that the relative e�ciency is below r, is t2↵/(r

2p̂). In the setting of this
experiment, with r = 0.1 and a uniqueness probability of roughly one percent,
and choosing ↵ = 0.95, it turns out that we have to sample until the number
of ‘unique samples’ (that is, the n

+

) is about 400. This procedure gives us
reliable estimates for the uniqueness probabilities of all municipalities; we call
these p̂

1

up to p̂
428

.
The question is to what extent the approximation

pj = 0.84 · 10�2 · e�k2/N ·
j

is valid, and to this end we can now compare the 0.84 · 10�2 · e�k2/N ·
j with

the p̂j , for j = 1 up to 428. If these numbers would exactly match, then we
would have that log(0.84 · 10�2)� k2/N · j = log pj , or, in other words, that
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the logarithm of the uniqueness probability depends linearly on the Kullback-
Leibler distance. To study the validity of this relation, we plotted in Figure 4.1
the value of j against log p̂j ; each dot represents one municipality j.

The main conclusion from Figure 4.1 is that there is a remarkably good fit,
in that the cloud resembles a straight line quite well. The line drawn represents
the least squares fitting. The percentage of variance that can be explained by
the estimator, usually denoted by R2, provides a measure of the quality of the
fit; we obtained R2 ⇡ 0.72 (popularly: the estimator explained 72% of the
variance). We ran the same experiment but then for target probabilities in the
order of 10�3 and 10�4 (rather than the 0.83% of the above experiment); these
yield values of the R2 of even 0.79 and 0.82, respectively.

Another general conclusion is that the use of ⇡
u

(k,N) without correction
by e� would lead to substantially overestimating the uniqueness probability.
Noting that e�5.8 = 3.0 · 10�3 (where �5.8 is a typical value for log pj , as seen
in Figure 4.1) indicates that the naive estimate ⇡

u

(29, 95) = 8.4·10�3 is usually
o↵ by a factor of about 3, due to the heterogeneity that was not taken into
account.

We performed the same experiments for the combination age and gender
(that is, M = 95 ⇥ 2 = 190). We took k = 41, where it is noted that
⇡
u

(41, 190) = 0.95%. Figure 4.2 shows that the same e↵ects apply as in the
situation in which just age was considered.

4.4.2 Additional experiments

In this Section we report the outcomes of a number of additional experiments;
in the numerics we rely on the approximation formula that was developed in
Section 4.3.1, and validated in Section 4.4.1.

In a first experiment we study the e↵ect of the group size k; we return to
our example of Section 4.4.1, in which the individuals reveal their ages. For
clarity of exposition, we chose two municipalities (Laren and Urk) that di↵er
substantially in Kullback-Leibler distance  (Laren has a  of 0.0914, Urk has
0.4011). This di↵erence is reflected clearly in the uniqueness probability, as
displayed in Figure 4.3. We approximately have

⇡(k,N) ⇡ exp

✓
�
✓
1

2
+ 

◆
k2

N

◆
.

If we would assume uniformity, then  = 0; the resulting graph has been
displayed as well.
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Figure 4.3: For two Dutch municipalities: the uniqueness probability
as a function of the group size k; also the curve under uniformity has
been added.
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Our next experiment is inspired by the fact that quite often the data avail-
able is relatively coarse-grained and aggregated. For example, in the context
of Figure 4.2 we had information on the number of individuals that were of
any given (age, gender)-pair (there were 95 ⇥ 2 = 190 such pairs). Suppose,
however, that we have less information: we only know the number of males
and females, and per age the number of individuals (that is, just 97 numbers,
where of course the sum over all ages should match with the sum of the male
and female). For this situation the same questions can be posed; notice that
the machinery developed in this Chapter does not immediately apply.

Figure 4.4 provides an indication of the e↵ect that aggregated statistics
of age have on the Kullback-Leibler distance for age. The figure shows the
Kullback-Leibler at the level of individual ages (i.e., not grouped), at the level
of age groups of 2 (‘age 0-1’, ‘age 2-3’, ‘age 4-5’, etc.) and age groups of 5
(‘age 0-4’, ‘age 5-9’, ‘age 10-14’, etc.). The horizontal axis is a meaningless
index of the municipalities, which for clarity of exposition were ordered by
Kullback-Leibler distances for the non-grouped scenario.

4.5 Discussion and future work

One of the common challenges in k-anonymity and its developments is the
recognition of quasi-identifiers. The method we proposed in this Chapter pro-
vides a new way of e�ciently estimating the likelihood that given set of at-
tributes will function as a perfect quasi-identifier, i.e,. that each value of a
quasi-identifier unambiguously identifies an individual.

We proposed an approximation for the uniqueness probability when sam-
pling k objects from a population of N , for the situation where the N outcomes
are not equally likely. The deviation with respect to the uniform distribution
is captured by the Kullback-Leibler distance. The approximation clearly shows
how the heterogeneity a↵ects the anonymity: the more heterogeneous the pop-
ulation is, the lower the uniqueness probability. In terms of k-anonymity:
the more heterogeneous the population is, the lower the probability that ev-
ery record in a table will unambiguously identify an individual through the
approximated QID.

We emphasize that the anonymity metric used in this Chapter (that is,
the uniqueness probability) does not unambiguously reflect the e↵ect for an
individual. For instance, if the individual has an age that is relatively rare
within the population (the person is relatively old, for instance), then of course
he or she is more likely to be identifiable.

Our approximation has several restrictions. First, it can only be applied
when the number of subjects k is smaller than the number of quasi-identifier
values N . Second, we assumed that while the adversary does not know which
identity belongs with each quasi-identifier value, he does know the set of identi-
ties of those whose data is present within the de-identified data set; this holds,
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for example, if the adversary attempts to link an identified data set containing
all citizens in a municipality to a de-identified data set that also contains all
citizens in that municipality. In Chapter 5 and Chapter 6 we will look into
di↵erent settings.

While the approximation formula allows data holders and policy makers to
make predictions about future data collection, and individuals to predict what
information the population to which one belongs may better (not) disclose at
the end of a survey, there are still a number of challenging open questions. For
example, age and gender (as in Figure 4.2) are roughly independent of each
other, which makes all computations easier, but quite often when considering
multiple quasi-identifiers such a property does not hold. Consider age and
marital status: in the Netherlands there will be near-to-zero married people
younger than 18 (Dutch law provides for rare exceptions, but none below age
16), therefore, being a widow at a young age is highly unlikely. The question
arises how these dependencies should be dealt with.

A useful lemma
Lemma 4.1 In the scaled heterogeneous model, as N ! 1,

Cov(S
i

(N), S
j

(N))

N
! �a3↵2

i

f
i

↵2
j

f
j

e�(↵
i

+↵

j

)a.

Proof: From the expressions in Section 5.3, it is straightforward that

Cov(S
i

(N), S
j

(N))

N(↵
i

f
i

↵
j

f
j

)

= a(Na � 1)

✓
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↵
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+ ↵
j
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◆
Na

� a2N

✓
1 �

↵
i

N

◆
Na

✓
1 �

↵
j

N

◆
Na

⇠ a2N
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1 �

↵
i

+ ↵
j

N

◆
Na

�
✓
1 �

↵
i

N

◆
Na

✓
1 �

↵
j

N

◆
Na

!
,

where f(n) ⇠ g(n) denotes that f(n)/g(n) ! 1 as n ! 1. We have, due to
L’Hôpital’s rule, for A,B 2 R,

lim

N!1

✓
1 �

A + B

N

◆
Na

�
✓
1 �

A

N

◆
Na

✓
1 �

B

N

◆
Na

1

N

=  0
(0),

with  (x) := (1 � (A + B)x)a/x � (1 � Ax)a/x(1 � Bx)a/x. Using Taylor
expansions, we find  0(0) = �aABe�a(A+B). Now plugging in A = ↵i and
B = ↵j yields the stated result. 2





5 Analysis of singletons in
generalized birthday
problems

5.1 Introduction

Consider again a population of k people, each of them independently assigned
a certain ‘feature’ (for instance: gender, birthday, age, . . .) which is element of
{1, . . . , N}; in case of gender N = 2 (we simplify reality for clarity of exposi-
tion), in case of birthday N = 365 (neglecting leap years), in case of age N can
be taken, say, 95. We assume the distribution of the feature over {1, . . . , N}
is given, which is not a priori assumed to be uniform (birthday and gender
will be roughly uniform, whereas age will not). In the literature this setting is
often referred to as that of the generalized birthday problem (see Chapter 4),
or, alternatively, the birthday problem with unequal probabilities. There is a
vast literature on this topic, e.g. [26, 31, 40, 41, 53, 62].

Some of the outcomes will be assigned to just one of the k people in the
population; we call these singletons. The objective of this Chapter1 is the
analysis of the distribution of the number of singletons S. We subsequently
address its mean and variance, as well as a computational scheme for evaluating
the distribution of S. It is noted that existing literature, and also Chapter 4,
primarily focus on the probability that all k samples are unique (where it was

1This Chapter is based on M. Koot and M. Mandjes, The analysis of singletons in

generalized birthday problems, Probability in the Engineering and Information Sciences, April
2012) [42].

55



56 CHAPTER 5. ANALYSIS OF SINGLETONS

obviously assumed that k  N).
Similar to Chapter 3, this Chapter will assume that the adversary knows,

beforehand, the set of identities of those whose data is present within the de-
identified data set.

The contributions of this Chapter are as follows. Our results cover both
the homogeneous setting (that is, all outcomes 1, . . . , N being equally likely,
that is, have probability 1/N) and the heterogeneous setting. In the latter, we
assume there are Fi ‘bins’ that have probability ↵i/N ; obviously we require
that F

1

+ · · ·Fd = N and ↵
1

F
1

+ · · ·↵dFd = N.

• In Section 5.2 we first derive an explicit expression for the mean number
of singletons ES. We then scale the number of samples and number of
outcomes per group by N , that is, k ⌘ aN and Fi ⌘ fiN . We then show
that the mean number of singletons in the scaled model, that is, ES(N)
can be accurately approximated by

ES(N) ⇡ aN e�a
⇣
1 +

a

2
(a� 2)

⌘
,

where  is the Kullback-Leibler distance [23, 47] between our heteroge-
neous distribution and the homogeneous one. This approximation nicely
reflects the impact of heterogeneity on the number of singletons. As we
will argue, this e↵ect is both quantitatively and qualitatively di↵erent
for di↵erent values of a: for low values of a, ES(N) is increasing in ,
whereas for high values of a, ES(N) is decreasing in . We illustrate the
theory by an example.

• In Section 5.3 we perform a similar analysis for the variance of S. Again
we first derive an exact expression for VarS, and then consider approxi-
mations in the scaled model.

• Section 5.4 first develops a recursive algorithm that identifies the full
distribution of S for the homogeneous case. A crucial role is played by a
technique to find the probability of no singletons, i.e., P(S = 0). Then
it is demonstrated how to extend the analysis to the heterogeneous case,
for which also a more explicit approximation is presented.

• Section 5.5, finally, is devoted to numerical experiments. Based on demo-
graphic data of all Dutch municipalities, we estimate the heterogeneity
, and then assess the accuracy of the approximations for ES and VarS.

5.2 Mean number of identifiable objects

In this Section we analyze the mean number of singletons. We find an exact
expression, as well as approximations that show how the heterogeneity a↵ects
this quantity.
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5.2.1 Explicit expressions

We first consider the homogeneous case: suppose one throws k balls into N
bins, uniformly at random. Then, the probability that a given bin contains
exactly one ball (a ‘singleton’) is

k · 1

N

✓
1� 1

N

◆k�1

; (5.1)

here we make use of the fact that the number of balls in that bin obeys a
binomial distribution with parameter k and 1/N. As there are N bins, it follows
that the mean number of singletons is

ES = k

✓
1� 1

N

◆k�1

.

The result for the homogeneous case is standard, but interestingly it can be
extended to the heterogeneous setting in a straightforward manner. Let there
be Fi bins that have probability ↵i/N ; obviously F

1

+ · · ·Fd = N and ↵
1

F
1

+
· · ·↵dFd = N. Let Ni the number of balls that end up in bins of type i, and let
Si be the number of singletons among them; observe that Ni has a binomial
distribution with parameters k and ↵iFi/N . It is clear that

ESi = kFi

⇣
1� ↵i

N

⌘k�1 ↵i

N
. (5.2)

We arrive at the following statement.

Proposition 5.1 In the heterogeneous model defined above, the mean number
of singletons equals

ES = k
dX

i=1

Fi

⇣
1� ↵i

N

⌘k�1 ↵i

N
.

We now consider the number of singletons S(N) in the asymptotic regime
in which there are aN balls, and Fi is scaled by N (that is, Fi ⌘ fiN). After
straightforward calculus we find the following result.

Proposition 5.2 In the scaled heterogeneous model defined above, the mean
number of singletons satisfies, as N ! 1,

ES(N)

N
! a

dX

i=1

↵ifie
�↵

i

a.

This result essentially states that the number of singletons equals roughly Na
(the number of balls), but thinned by a factor

Pd
i=1

↵ifi exp(�↵ia); from the
requirement that ↵

1

f
1

+ · · ·↵dfd = 1 it is immediately seen that this factor is
smaller than 1.
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5.2.2 Impact of heterogeneity: an approximation

Similar to Chapter 4 and [53], we can assess the impact of heterogeneity by
parameterizing ↵i = 1+�i", for " typically small; evidently, �

1

f
1

+· · ·�dfd = 0.
Relying on the Taylor series ex = 1 + x + x2/2 + O(x3), it is now immediate
that

a

dX

i=1

↵ifie
�↵

i

a = ae�a
dX

i=1

fi(1 + �i")e
��

i

"a

= ae�a
dX

i=1

fi(1 + �i")

✓
1� �i"a+

1

2
(�i"a)

2

◆
+O("3)

= ae�a

 
1 +

a

2
(a� 2)

dX

i=1

fi�
2
i "

2

!
+O("3). (5.3)

The Kullback-Leibler distance  of the non-uniform probabilities (1 + �i")/N
with respect to the uniform probabilities 1/N reads, as described in Chapter 4,

 :=

dX

i=1

fiN

✓
1 + �i"

N

◆
log

✓✓
1 + �i"

N

◆�✓
1

N

◆◆
=

1

2

dX

i=1

fi(�i")
2 +O("3).

This suggests the approximation

ES ⇡ ke�k/N

✓
1 +

k

N

✓
k

N
� 2

◆
· 
◆
. (5.4)

It can even be computed what the fraction �j of bins is that is covered by
j balls, when sampling aN balls. In the homogeneous case this leads to the
known result that

�j = lim
N!1

✓
aN

j

◆✓
1

N

◆j ✓
1� 1

N

◆aN�j

= e�a a
j

j!
;

we recognize the Poisson distribution. In the heterogeneous model described
above,

�j =
dX

i=1

fie
�↵

i

a (↵ia)j

j!
.

Notice that the �j sum to 1, as desired (recall they represent fractions). Again
parameterizing ↵i = 1 + �i", for " small, we obtain

�j =

dX

i=1

fie
�a (1� �i"a+ 1

2 (�i"a)
2)(1 + j�i"+

1
2 j(j � 1)(�i")

2)

j!
+O("3)

= e�a a
j

j!

 
1 + (a2 + j(j � 1)� 2ja) · 1

2

dX

i=1

fi�
2
i "

2

!
+O("3).
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Replacing a by k/N and 1

2

Pd
i=1

fi�2

i "
2 by , this gives an approximation for

the fraction of bins covered by j balls, as a function of k, N , and the ‘non-
homogeneity’ :

�j ⇡ e�k/N (k/N)j

j!

✓
1 +

✓
k2

N2
+ j(j � 1)� 2j

k

N

◆


◆
. (5.5)

5.2.3 Remarks, example

Remark 5.3 The above findings also enable us to compute the fraction �j of
people being in a group of size j; cf. the concept of k-anonymity in privacy
[1, 77]. After an elementary computation, we obtain for j = 1, 2, . . .

�j =
j�jP1
`=1

`�`
=

dX

i=1

fi↵ie
�↵

i

a (↵ia)j�1

(j � 1)!
.

As before, this can be approximated by an expression in terms of k, N , and 
only, under ↵i = 1 + �i":

�j ⇡ e�k/N (k/N)j�1

(j � 1)!

✓
1 +

✓
k2

N2

+ j(j � 1)� 2j
k

N

◆


◆
. (5.6)

It is a matter of elementary calculus to verify that both the approximation of
�j (as given in Eqn. (5.5)) and the approximation of �j (as given in Eqn. (5.6))
add up to 1 (summing over j = 1, 2, . . .), as it should.

Remark 5.4 We now study for which value of k the above approximation
(5.4) is maximized. We do so by looking at the scaled version:

max
a�0

ae�a

✓
1 +

1

2
a(a� 2)

◆
.

This yields the first order condition

e�a
⇣
(1� a)� a

2
(a� 1)(a� 4)

⌘
= 0,

yielding the optimizer a = 1 (which is easily seen to be a maximizer for  < 2

3

).
We observe that (5.4) first increases in k, reaches a maximum N/e at

k? = N , and then decreases, with limiting value 0 as k ! 1. This quali-
tative behavior can be understood easily. For small k there are few singletons,
as there are few samples; for large k quite likely all possible outcomes have
been sampled more than once, also resulting in a low number of singletons.

For instance in case of birthdays, assuming they are equally spread over the
365 days, then sampling 365 individuals maximizes the number of identifiable
objects, which is (on average) 134.
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Remark 5.5 Expression (5.3) confirms the claim that (for a  2, at least) the
mean number of singletons is maximized by the uniform distribution (that is,
�i = 0 for all i = 1, . . . , d) — this is due to the absence of a linear (in ") term
in the expression in (5.3).

It is observed the mean number of singletons decreases in  for small a (that
is, a < 2), but increases for large a (that is, a > 2). This can be intuitively
understood.

• For small a, most bins will be empty or occupied by just one or two balls.
Then heterogeneity leads to a smaller number of singletons, as it increases
the probability that two balls end up in the same bin.

• For large a, most bins will be occupied by multiple balls. The more
heterogeneity, the larger the probability that it is actually just one ball,
thus leading to more singletons.

Example 5.6 Consider the following (somewhat atypical) example. Suppose
one has data of a set of individuals, consisting of (a) postal code, and (b) age.
Assume that ages range from 0 to 94, and (for the moment) that all these ages
are equally likely — below we indicate how to deal with heterogeneity. Now
suppose that k people share a postal code, and that k needs to be chosen so as
to optimize the number of uniquely identifiable individuals.

If there is no penalty imposed on the number of postal codes introduced,
it is evident that it is optimal to give any individual her or his own postal
code. It is more realistic to assume that there are costs, say C, for every
postal code introduced. If the set of people has size M , then about (M/k) ·
k exp(�k/N) individuals can be uniquely identified. We are therefore faced
with the optimization problem

max
k

Me�k/N � C
M

k
;

observe that the value of M is irrelevant when determining the optimum group
size k?.

It is a matter of elementary computation to conclude that for C = 1 one
should have 10 individuals per postal code; for C = 10 we obtain 38. Adapta-
tion to the heterogeneous case is straightforward: then

Me�k/N

✓
1 +

k

N

✓
k

N
� 2

◆
· 
◆
� C

M

k

should be maximized.

5.2.4 Continuous model

The result of Proposition 5.2 can be further refined. We now present its con-
tinuous counterpart. Let '(·) be a continuous density on [0, 1], and define the
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probability that an arbitrary ball is put in bin i by

�i,N :=

Z i/N

(i�1)/N
'(x)dx.

Then, in the scaled model, due to Proposition 5.1,

lim
N!1

ES(N)

N
= a lim

N!1

NX

i=1

(1� �i,N )aN�1�i,N

= a lim
N!1

NX

i=1

✓
1� 1

N
'

✓
i

N

◆◆aN�1 1

N
'

✓
i

N

◆
.

Now it is a matter of straightforward analysis to derive the following result.

Proposition 5.7 In the scaled heterogeneous model defined above, the mean
number of singletons satisfies, as N ! 1,

ES(N)

N
! a

Z
1

0

'(x)e�'(x)adx.

Example 5.8 Consider the density '�(x) = �(x � 1

2

) + 1, with � 2 [�2, 2].
The substitution y := a(�(x� 1

2

) + 1) substitution yields

a

Z 1

0

'�(x)e
�'

�

(x)adx =
1

�a

Z a(1+�/2)

a(1��/2)
ye�ydy.

After some calculus, this expression can be rewritten as

e�a

✓
a+ 1

�a

◆⇣
ea�/2 � e�a�/2

⌘
� e�a

2

⇣
ea�/2 + e�a�/2

⌘
.

For instance for � = 2, we thus find

ES(N)

N
! 1� e�2a � 2ae�2a

2a
,

which is maximized for a ⇡ 0.90.
We could use an approximation in the spirit of (5.3) to approximate ES. For

this model, it takes a straightforward computation to obtain that the Kullback-
Leibler distance, as a function of the ‘asymmetry parameter’ � equals

 =
1

2�

✓⇣
1 +

�

2

⌘
2

log
⇣
1 +

�

2

⌘
�
⇣
1� �

2

⌘
2

log
⇣
1� �

2

⌘
� 1

◆
;

Observe that  is minimal for � = 0 (corresponding with the uniform distribu-
tion), and symmetric around 0, as could be expected.
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5.3 Variance of the number of identifiable objects

This Section considers the variance of the number of singletons. Again, after
giving exact expressions and approximations, we study the impact of hetero-
geneity.

5.3.1 Explicit expressions

As usual, we start with the homogeneous case. Let Ij be the indicator function
of the event that there is exactly one ball in bin j (where j = 1, . . . , N). It was
observed before that

P(Ij = 1) = k · 1

N

✓
1� 1

N

◆k�1

,

but it is easily verified that for j
1

6= j
2

,

P(Ij1 = 1, Ij2 = 1) = k(k � 1) · 1

N2

✓
1� 2

N

◆k�2

.

Observe that S = I
1

+ · · · IN . From

VarS = ES2 � (ES)2 =
NX

i=1

EIi +
X

i 6=j

EIiIj � (ES)2,

we find (noting that there are N(N � 1) terms for which i 6= j)

VarS = k

✓
1� 1

N

◆k�1

+ k(k � 1) · N � 1

N

✓
1� 2

N

◆k�2

� k2

✓
1� 1

N

◆2k�4

.

Again we can consider the random variable S(N), after scaling k ⌘ aN.
Directly from the previous formula, we obtain

lim
N!1

VarS(N)

N
= ae�a + a2 lim

N!1
N

 ✓
1� 2

N

◆aN

�
✓
1� 1

N

◆2aN
!
.

It is clear that

lim
N!1

N

 ✓
1� 2

N

◆aN

�
✓
1� 1

N

◆
2aN

!
= f 0(0),

with f(x) = (1� x)2a/x. Straightforward calculus yields that f 0(0) = �ae�2a.
In other words, in the homogeneous model,

lim
N!1

VarS(N)

N
= ae�a(1� a2e�a).
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We now consider the heterogeneous case. Recall the standard relation

VarS =
dX

i=1

VarSi +
X

i 6=j

Cov(Si, Sj).

Let us first compute VarSi = ES2

i � (ESi)2. Observing that we already found
ESi in (5.2), we now focus on ES2

i . Conditioning on the number of objects
that ends up in group i (which we assumed to have Fi elements, each with
probability ↵i/N) yields

ES2

i =
kX

j=0

✓
k

j

◆✓
↵iFi

N

◆j ✓
1� ↵iFi

N

◆k�j

· E(S2

i |Ni = j).

As earlier,

E(S2
i |Ni = j) = j

✓
1� 1

Fi

◆j�1

+ j(j � 1) · Fi � 1

Fi

✓
1� 2

Fi

◆j�2

,

so that

ES2
i = kFi

⇣
1� ↵i

N

⌘k�1 ↵i

N
+ k(k � 1)F 2

i

✓
1� 2↵i

N

◆k�2 ⇣↵i

N

⌘2
. (5.7)

We are now left with computing Cov(Si, Sj) = ESiSj � ESi ESj for i 6= j.
As we already know ESi, we focus on ESiSj . It holds that

ESiSj =
kX

`
i

=0

k�`
iX

`
j

=0

✓
k

`i, `j

◆✓
↵iFi

N

◆`
i

✓
↵jFj

N

◆
`j

✓
1� ↵iFi

N
� ↵jFj

N

◆k�`
i

�`
j

· E(SiSj |Ni = `i, Nj = `j),

and in addition a conditional independence argument yields that

E(SiSj |Ni = `i, Nj = `j) = `i

✓
1� 1

Fi

◆`
i

�1

`j

✓
1� 1

Fj

◆`
j

�1

.

Standard computations now yield that

ESiSj = k(k � 1)FiFj

⇣
1� ↵i

N
� ↵j

N

⌘k�2 ↵i

N

↵j

N
. (5.8)

Now all the above findings can be collected.
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Proposition 5.9 In the heterogeneous model defined above, the variance of
the number of singletons equals

VarS =
dX

i=1

�
ES2

i � (ESi)
2

�
+
X

i 6=j

(ESiSj � ESi ESj) ,

with ESi given by (5.2), ES2

i by (5.7), and ESiSj by (5.8).

We now again look at the scaled variant. As before,

VarSi(N)

N
! a↵ifie

�↵
i

a
�
1� a2↵ifie

�↵
i

a
�
.

Also, due to Lemma 4.1,

Cov(Si(N), Sj(N))

N
! �a3↵2

i fi↵
2

jfje
�(↵

i

+↵
j

)a.

We arrive at the following statement.

Proposition 5.10 In the scaled heterogeneous model defined above, the vari-
ance of the number of singletons satisfies, as N ! 1,

VarS(N)

N
!

dX

i=1

a↵ifie
�↵

i

a �1� a2↵ifie
�↵

i

a��
X

i 6=j

a3↵2
i fi↵

2
jfje

�(↵
i

+↵
j

)a

= a
dX

i=1

↵ifie
�↵

i

a � a3
dX

i=1

dX

j=1

↵2
i fi↵

2
jfje

�(↵
i

+↵
j

)a

= a

dX

i=1

↵ifie
�↵

i

a � a3

 
dX

i=1

↵2
i fie

�↵
i

a

!2

.

5.3.2 Impact of heterogeneity; an approximation

We again parameterize ↵i = 1 + �i". We already observed that

a

dX

i=1

↵ifie
�↵

i

a = ae�a

 
1 +

a

2
(a� 2)

dX

i=1

fi�
2
i "

2

!
+O("3),

whereas it turns out that

a3

 
dX

i=1

↵2
i fie

�↵
i

a

!2

= a3e�2a

 
1 + (2� 3a)

dX

i=1

fi�
2
i "

2

!
+O("3).

This leads to the approximation (for the unscaled model)

VarS ⇡ ke�k/N

✓
1� k

N

✓
k

N
� 2

◆


◆
� k3

N2
e�2k/N

✓
1 +

✓
4� 6

K

N

◆


◆
.
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5.3.3 Continuous model

We now consider the continuous model, analogously to Section 5.2.4; the prob-
ability of a ball being put in bin i is �i,N , equalling the integral over the density
'(·) between (i� 1)/N and i/N, for i = 1, . . . , N. The proof of following result
is similar to the proof of Proposition 5.7.

Proposition 5.11 In the scaled heterogeneous model defined above, the vari-
ance of the number of singletons satisfies, as N ! 1,

VarS(N)

N
!
Z

1

0

a'(x)(1� a2'(x))e�'(x)adx.

We conjecture that (S(N) � ES(N))/
p
VarS(N)/N converges to a standard

Normal random variable.

5.4 Probability of at least one singleton

Let ⇠(k,N) be the probability of at least one identifiable object, that is, the
probability P(S > 0) of at least one singleton. Particularly if k is large relative
to N , this is an interesting anonymity metric. (An example could be: suppose
one receives data about the ages of 300 people; is there anyone among these
300 people whose age is unique within that group?). In this Section we develop
a recursive scheme to evaluate ⇠(k,N).

5.4.1 Recursive scheme

We analyze this probability by computing the probability ⇣(k,N) of its comple-
ment (that is, no singletons); we start with the homogeneous case. Consider an
arbitrary ball that ends up in an arbitrary bin. As there should not be single-
tons, it means that at least one more ball (out of the remaining k � 1) should
be in that bin as well; realize that the number of balls that are in that bin
(apart from the tagged one) follows a binomial distribution with parameters
k � 1 and 1/N. We thus find

⇣(k,N) =
k�1X

j=1

✓
k � 1

j

◆✓
1

N

◆j ✓
1� 1

N

◆k�1�j

⇣(k � 1� j,N � 1).

The initialization of this recursion is ⇣(k, 1) = 1 and 1� ⇣(0, N) = ⇣(1, N) = 0
for any k = 2, 3 . . . and N = 1, 2, . . . The first steps can be done easily:

⇣(2, N) =
1

N
, ⇣(3, N) =

1

N2

, ⇣(4, N) =
3N � 2

N3

,
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and, with a bit more e↵ort,

⇣(5, N) =
10N � 9

N4

, ⇣(6, N) =
15N2 � 20N + 6

N5

,

⇣(7, N) =
105N2 � 259N + 155

N6

.

Table A.1 in Appendix A presents the values of ⇣(k,N) for k = 1, . . . , 50 and
N = 1, . . . , 20. It shows that ⇣(k,N) goes to 1 for k large. In addition, for fixed
k, ⇣(k,N) decreases with N . A nice sanity check for formulae for ⇣(k,N) is
the relation (k � 3)

⇣(k, 2) = 1� k

2k�1

.

5.4.2 Full distribution of number of singletons

The above results immediately lead to the full distribution of the number of
singletons S; for ease we restrict ourselves to the uniform case. It is seen that

P(S = j) =

 
N

j

!
k(k � 1) · · · (k � j + 1)

✓
1

N

◆j ✓
1� j

N

◆k�j

⇣(k � j,N � j);

evidently P(S = 0) = ⇣(k,N). Evidently, for k  N , we already knew from
the standard birthday problem that

P(S = k) =
N !/(N � k)!

Nk
.

5.4.3 Heterogeneous case

Once we have computed the numbers ⇣(i, j) (that correspond to the homoge-
neous case), it is fairly easy to deal with the heterogeneous case:

⇣(k,N) =
X

j

✓
k

j
1

, . . . , jd

◆ dY

i=1

✓
↵iFi

N

◆j
i

⇣
u

(ji, Fi),

where ⇣
u

(· , ·) refers to the probability of no singletons in the uniform case,
and the summation is over vectors j 2 {0, 1, . . .}d such that j

1

+ · · · jd = k.
It is observed that this expression is hard to evaluate, as one has to sum over
all vectors j whose entries add up to k, whose number grows explosively in k.
This explains the need for approximations. One such approximation relies on
the idea of replacing the multinomial distribution by the corresponding Poisson
distribution (where the individual components are assumed to be independent).
Then one obtains

⇣(k,N) =
dY

i=1

0

@
1X

j=0

 
exp

✓
�k↵iFi

N

◆ ✓
k↵iFi

N

◆j
,

j!

!
· ⇣

u

(j, Fi)

1

A .
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Figure 5.1: Mean number of singletons, as a function of the Kullback-Leibler
distance . Left panels: full population; right panels: ages 0–79 only. Top to
bottom: k = 60, 90, 120.
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5.5 Numerical experiments

In this Section we report on numerical experiments that we ran with demo-
graphic data of all 428 Dutch municipalities that existed in 2010. For all of
them we first determined the distribution of age over the population. Ages
were truncated at 94 years, leaving us with 95 bins, viz. 0 up to and including
94). Then we computed on the basis of this data the Kullback-Leibler distance
, and the mean and variance of the number of singletons. The mean ES, and
the mean plus/minus twice the standard error ES ± 2

p
VarS are depicted in

the left panels of Fig. 5.1, as a function of the  — each dot represents one
municipality.

We also include Approximation (5.4), which is a linear function of . As
argued in the derivation, it is supposed to perform well if the distance with
respect to the uniform distribution is relatively modest. From the left panels of
Fig. 5.1, it is seen that the approximation does not give an accurate prediction.
This is mainly due to the fact that the distribution is highly non-uniform for
the higher ages (ages above, say, 85 are hardly represented). In the right panels
we performed the same experiments, but just for the ages 0 up to and including
79, and there we indeed see an excellent fit.

Although the left panels indicate that Approximation (5.4) does not yield
an accurate estimate for the mean number of singletons ES in case the non-
uniformity is too strong, the (nearly) linear shape of the scatter plot does show
that knowledge of the Kullback-Leibler distance accurately predicts ES. One
could for instance approximate ES (as a function of ) by the linear regression
�
0

+ �
1

, where �
0

and �
1

are estimated by a least squares procedure.
The left panels show that the mean number of singletons is highest for

k = 90, which could be expected from Remark 5.4 (recall that N = 95 here).
Additional experiments (not reported on here) show that when leaving out the
ages 80–94, the mean number of singletons is indeed highest around k = 80.

Fig. 5.2 shows a scatter plot of the Kullback-Leibler distance  and the
variance VarS. For the full population we observe three decreasing, more or
less linear lines; when leaving out the ages 79–94 there is hardly any sensitivity
in .

5.6 Concluding remarks

This Chapter presented an analysis of the number of singletons in the setting of
the generalized birthday problem. Various metrics have been studied. Special
attention has been paid to obtaining insight into the impact of heterogeneity on
the number of singletons. In Chapter 7 we will discuss applications of the theory
developed here. Future research includes extensive testing with demographic
data.
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Figure 5.2: Variance of the number of singletons, as a function of the Kullback-
Leibler distance . Left panel: full population; right panel: ages 0–79 only.





6 Practical guidelines on
correlation and
aggregation

6.1 Introduction

One objective of this thesis is to quantify to what extent it is possible to
unambiguously identify a person from a few pieces of information, such as
postal code and age. Recalling Chapter 5, consider the setting in which one is
asked to anonymously fill out a questionnaire, at the end of which one is asked
to reveal postal code and age. We argued that the above setting gives rise to
a set of questions that are mathematically interesting. Considering a group of
k individuals that share a postal code: how many of them have an age that
is unique within that group? Recall from Chapter 4 and Chapter 5 that one
can view this question as a generalized birthday problem: one samples k times
from a distribution on a finite set (say, {1, . . . , N}), and is interested in the
distribution of the number of singletons S, where singletons are defined as the
outcomes that show up precisely once in the sample of size k.

Previous research focused primarily on determining the probability that all
outcomes are unique (that is, all k people are unambiguously identifiable in
the setting that all outcomes are equally probable). There is vast literature
on characterization of this quantity; for example, see [26, 31, 40, 41, 53, 62].
However, the scenario in which the N possible outcomes are equally likely to
occur is hardly ever met in practice. In addition, focus was on the probability
of all k individuals corresponding to singletons, and less on the analysis of the
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72 CHAPTER 6. CORRELATION AND AGGREGATION

number of singletons S, for instance in terms of its expectation ES. As argued
in Chapter 5, this is clearly a relevant quantity, because a lower number of
singletons can be indicative of a higher degree of privacy (we define ‘degree
of privacy’ in terms of the number of persons from which one can’t be dis-
tinguished using only, in our example, age and postal code). A challenging
question is how non-uniformity of the distribution on {1, . . . , N} a↵ects the
number of singletons. Note that besides singletons, also doubletons (indistin-
guishability from one other person), tripletons (indistinguishability from two
other persons), etc., may be relevant, as with minor additional e↵ort, these
persons can be identified as well.

The primary objective of this Chapter1 lies in providing practical guide-
lines for the analysis of the distribution of the number of singletons S and
related quantities. In addition, whereas Chapter 5 described the e↵ect of non-
uniformity on anonymity, this Chapter asserts the correctness of that descrip-
tion via numerical analysis. The contributions of this Chapter are as follows:

• Section 6.2 recalls the approach to quantifying the e↵ect of non-uniformity
on identifiability that was developed in Chapter 5. We advocate the use of
an approximation in which the non-uniformity is summarized by a single
number, the Kullback-Leibler distance [47]. We assess the accuracy of
this approach using numerical validation based on real data from Dutch
municipalities. Our experiments show that our formulas yield reliable
approximations for the metrics under study; in addition, it is shown that
estimates that take non-uniformity into account outperform estimates
that assume uniformity. These results are presented in Section 6.2.

• Section 6.3 quantifies how aggregation influences identifiability. Consider
a questionnaire in which one reveals weight in kilograms. There is a
di↵erence between rounding it to the nearest integer and rounding it
to the nearest even number. In the former case there will be a lower
degree of privacy. In mathematical terms: suppose one is asked to reveal
their weight, rounded to a multiple of �, what is the impact of � on
the number of singletons S? Clearly, if � is close to zero, then S will
be close to k, but how does ES decrease with �? For the case of non-
uniform probabilities, we develop an explicit relation between ES and the
aggregation ‘interval’ �. Formulas are derived and tested for the special
case of a Normal distribution.

• Section 6.4 quantifies how correlation between variates influences iden-
tifiability. Consider a questionnaire in which one is asked to reveal not

1This Chapter is based on M. Koot, M. Mandjes, G. van ’t Noordende and C. de Laat, A
Probabilistic Perspective on Re-Identifiability, Mathematical Population Studies, submitted
November 2011 [44].
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only weight, but also height. The question we address is: to what ex-
tent does the correlation between height and weight a↵ect the number of
singletons? One would expect that the stronger the correlation between
the two variates, the less information the second variate adds to the first
variate. Indeed, Section 6.4 confirms that correlated variates yield less
singletons than independent variates. Formulas are derived and tested for
the special case where the two variates correspond to a two-dimensional
Normal distribution.

6.2 Analysis of singletons

In this Section we consider the following setting. Let X be a single-dimensional
random variable, defined on a subset of R. We write Fi(�) := P(X 2 [i�, (i+
1)�)), so that

P
i Fi(�) = 1. We sample k times, independently, from the

distribution of X, and wonder how many intervals [i�, (i+1)�)) are occupied
by just a single observation; in the sequel we refer to these intervals as to
singletons. S denotes the number of these singletons.

Note that we cover the setting where X is an integer — for instance, if one
is asked to fill out age in years, and wants to quantify the identifiability, X lives
on {0, . . . , N}, where N is some ‘practical’ upper bound (perhaps 90 or 100);
� has to be chosen 1 then. Suppose one is asked to round age to a multiple of
two, then this corresponds to picking � = 2, etc.

6.2.1 General formulas

Due to the fact that S can be written as the sum of the number of singletons
in disjoint intervals, we have the following evident expression for the mean
number of singletons:

ES =
X

i

ESi =
X

i

k (1� Fi(�))k�1 ⇥ Fi(�);

here the random variable Si equals 1 if there is a singleton in the interval
[i�, (i + 1)�)) and 0 else, so that ESi can be interpreted as the probability
that there is a singleton in [i�, (i+ 1)�)).

In a similar way we can express the number of doubletons D. Note that
we define doubletons as the intervals of the type [i�, (i + 1)�)) in which two
realizations are present; clearly, the number of realizations that corresponds to
a doubleton is therefore 2D. For the expected number of doubletons we have

ED =
X

i

EDi =
X

i

✓
k

2

◆
(1� Fi(�)))k�2 ⇥ (Fi(�))2

=
1

2
k(k � 1)⇥

X

i

⇣
(1� Fi(�)))k�2 ⇥ (Fi(�))2

⌘
,
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where Di is 1 if there is a doubleton in the interval [i�, (i+ 1)�)) and 0 else.
Clearly, tripletons, quadrupletons, etc., can be dealt with similarly. Indeed, let
⌘j be the mean number of intervals in which j objects are present; then, for
j = 1, . . . , k,

⌘j =

✓
k

j

◆
⇥
X

i

⇣
(1� Fi(�)))k�j ⇥ (Fi(�))j

⌘
.

An elementary computation yields that
Pk

j=1

j⌘j = k, as to be expected. Let
�j be defined as the fraction of realizations that end up in an interval in a group
of size j (that is, with j�1 other objects); cf. the concept of k-anonymity, that
asserts that in a data set containing de-identified personal data, values for
any remaining quasi-identifying columns occur at least k times in that data
set[1, 73, 77]. From the ⌘j , we can easily compute the �j :

�j =
j⌘j 
kX

`=1

`⌘`

! =

 
k � 1

j � 1

!
X

i

⇣
(1� Fi(�)))k�j ⇥ (Fi(�))j

⌘
; (6.1)

it is readily verified that we indeed have that the �j sum to 1.

6.2.2 Formulas for a ‘nearly uniform’ distribution

We now present more explicit formulas for the special case that X is more or
less uniformly distributed, say on {1, . . . , N}. The probability that X equals i
is ↵i/N , with ↵i = 1+�i" with " small; evidently, it is required that

P
i �i = 0,

as the probabilities should sum up to 1. Let  be the Kullback-Leibler distance
[47] of X with respect to the uniform distribution:

 :=
NX

i=1

✓
1 + �i"

N

◆
log

✓✓
1 + �i"

N

◆�✓
1

N

◆◆

Through elementary calculus we obtain that, as " # 0,

 =
1

2N

NX

i=1

(�i")
2 +O("3).

The following approximation was derived in Chapter 5:

⌘j ⇡ Ne�k/N (k/N)j

j!

✓
1 +

✓
k2

N2

+ j(j � 1)� 2j
k

N

◆


◆
,

and also

�j ⇡ e�k/N (k/N)j�1

(j � 1)!

✓
1 +

✓
k2

N2

+ j(j � 1)� 2j
k

N

◆


◆
. (6.2)

In Chapter 5 we did not yet assess the accuracy of these approximations. In the
next subsection we will do so, using demographic data of Dutch municipalities.
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6.2.3 Experiments

Consider a questionnaire about a privacy-sensitive topic where respondents do
not need to disclose their name, but are asked to reveal their postal code and
age. As argued in the introduction, a natural question is: to what extent do
postal code and age, as a pair, uniquely define a person in the corresponding
population? The above formulas can be used to estimate �

1

, i.e., the fraction of
people that are singletons and thus unambiguously identifiable. Here, k denotes
the number of the people sharing a particular postal code and N denotes the
number of possible ages. We truncate at 79, so that there are 80 di↵erent ages;
the reason for this is that we found our formulas to yield less accurate results
when considering very low frequency outcomes. Our formulas are, however,
applicable in the analysis of privacy for the general population.

For 16 Dutch municipalities2 we have the date of birth of all inhabitants
per postal code. Dutch postal codes are typically shared between 20 to 60
people. In our numerical experiments, we take the following approach. Based
on the data of all people of age  79 within the municipality, we estimate
the probabilities ↵i/N (for i = 0, . . . , 79), and the Kullback-Leibler distance .
Then we use this value of  to estimate the fraction of people that are singleton
in a postal code that is shared between k people, using the formulas for �

1

of
the previous subsection; here we evaluate both the exact formula (6.1), and the
approximation (6.2) based on . In addition to �

1

, we also analyze �
2

and �
3

(the fraction of the k people involved that is part of a doubleton, tripleton).
We include here graphs that correspond to a larger city (Amsterdam, about

766k inhabitants) and a smaller municipality (Overbetuwe, 46k inhabitants).
These municipalities also di↵er considerably with respect to the non-uniformity
of the population in terms of age; the Kullback-Leibler distances are 0.086 and
0.055 respectively. The graphs of Fig. 6.1 show the estimates: for various values
of k, we plot �

1

, �
2

and �
3

(both based on (6.1) and (6.2)), the empirical result
(which we denoted by  ), and the result if we would assume all ages 0 up to
79 occur perfectly uniformly (that is,  = 0).

The approximations we developed have obvious advantages. Only know-
ing the age distribution of the municipality facilitates the computation of our
identifiability metrics. Approximation (6.2) even needs less information: the
non-uniformity of the distribution is summarized in a single number. It is clear,
however, that this approach assumes that the Kullback-Leibler distance  is
(more or less) constant across the postal codes within the municipality.

The main conclusions of our experiments are: (i) the approximations per-
form well, as they are usually just a few percent o↵; (ii) there is hardly any
di↵erence between the curves based on (6.1) and (6.2); (iii) if we would have as-

2Data from the municipality of Ameland was received after the empirical study presented
in Chapter 3, which lists 15 municipalities, had already been completed. We did, however,
use that data for the research presented in the current Chapter.
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Figure 6.1: �
1

,�
2

, and �
3

for two municipalities, as a function of the population
size of the postal code area.
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Figure 6.2: �
1

for all municipalities, as a function of the Kullback-Leibler dis-
tance , for k = 20, 40, 60, 80. Notice that the observations ( ) are accurately
predicted (�) by the Kullback-Leibler distance () for various population sizes
(k).

sumed uniformity (that is, Kullback-Leibler distance 0), the estimates obtained
are systematically worse.

Interestingly, for the number of singletons �
1

, we observe that our esti-
mates are typically slightly too high. In other words, in reality there are fewer
singletons than what could be expected based on knowledge of the municipal-
ity aggregates. This e↵ect can be explained as follows. We observe that the
number of singletons decreases in the level of non-uniformity, as captured by
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the Kullback-Leibler (KL) distance . As the estimates of  are based on the
population of the entire municipality, it is likely that within postal code areas
there will be a higher discrepancy relative to the uniform distribution (think
of a areas with young families, areas with many elderly people); informally:
the KL distance per postal code will be higher than the KL distance  of the
entire municipality. Based on this reasoning, one indeed anticipates a smaller
number of singletons than what could have been expected based on .

In the second series of experiments, we plot, for all Dutch municipalities,
the value of �

1

(the fraction of the population that can be unambiguously
identified) as a function of the Kullback-Leibler distance , again both based
on (6.1) and (6.2); we did so for the cases of k = 20, k = 40, k = 60, and
k = 80 persons in the postal code area, as depicted in Fig. 6.2. For the 16
municipalities for which we have the full data, we can estimate, for the above
postal codes sizes, �

1

as well; we have added these estimates and a confidence
interval constructed as the estimate ± twice the standard deviation.

6.3 Impact of interval-width

Consider a questionnaire in which one is asked to disclose how much one weighs.
Regarding anonymity, it makes quite a di↵erence whether one would be asked
to round the weight (in kilograms) to the nearest integer, or to the nearest even
number; in the former case there will be a higher level of identifiability. Put
in general terms: supposing that one has to reveal their weight, rounded to a
multiple of �, one would like to quantify the impact of � on the number of
singletons S. This is the main topic of the present Section.

6.3.1 Theoretical results

In a few special situations (uniform distribution, exponential distribution) the
impact of � can be examined in an explicit form, in other cases (Normal
distribution) approximations need to be developed. In this subsection we cover
both these closed-form expressions and approximations.

Uniform distribution. Suppose X is uniformly distributed on [0, A] for some
A > 0. It is not hard to verify that

ES = k

✓
1� �

A

◆k�1

.

To study the impact of �, we can write, as � # 0,

ES = k

✓
1� (k � 1)

�

A
+

1

2
(k � 1)(k � 2)

�2

A2

+O(�3)

◆
. (6.3)
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Indeed, for � # 0, the mean number of singletons is nearly k, as expected. The
formula indicates that for small �, ES decreases roughly linearly in �, with
slope k(k � 1)/A.

Exponential distribution. Suppose here that X is exponentially distributed
with mean 1/�. With L ⌘ L

�

:= e���, it follows that

ES = k
1X

i=0

�
1� Li + Li+1

�k�1

(Li � Li+1).

This infinite sum can be rewritten to a finite sum, as follows:

ES = k
1X

i=0

k�1X

j=0

✓
k � 1

j

◆�
�Li + Li+1

�j
(Li � Li+1)

= k
1X

i=0

k�1X

j=0

✓
k � 1

j

◆
(�1)j (Li � Li+1)j+1

= k
k�1X

j=0

✓
k � 1

j

◆
(�1)j

1X

i=0

(Lj+1)i(1� L)j+1

= k
k�1X

j=0

✓
k � 1

j

◆
(�1)j

(1� L)j+1

1� Lj+1

.

After further computation we obtain, as � # 0,

ES = k

✓
1� k��

2
+

k2�2�2

6
+O(�3)

◆
.

We see that this formula has a similar structure as (6.3), and we wonder whether
this form holds in general. We now show that this is indeed the case.

General distributions, featuring the Normal distribution. Let f(·) be the
density of X, which we assume to be continuous, and to live on R (if it has
only support on just a part of R, the argument below can be adapted in a
straightforward manner). Then we have the following obvious approximation,
assuming f(·) is di↵erentiable:

Fi(�) ⇡ � · f(i�) +
1

2
�2 · f 0(i�).

This immediately leads to the following expression for the mean number of
singletons:
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ES ⇡
1X

i=�1
k

✓
1 � � f(i�) �

1

2

�

2f 0
(i�)

◆
k�1

⇥
✓
� f(i�) +

1

2

�

2f 0
(i�)

◆

⇡
1X

i=�1
k ·
✓
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✓
� f(i�) +
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2f 0
(i�)

◆◆
⇥
✓
� f(i�) +

1
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�

2f 0
(i�)

◆

= k
1X

i=�1
� f(i�) � k(k � 1)

1X
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�

2 f2
(i�) + k

1X

i=�1

1
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�

2 f 0
(i�)

⇡ k

Z 1

�1
f(x)dx � � k(k � 1)

Z 1

�1
f2

(x)dx +

1

2

� k

Z 1

�1
f 0

(x)dx

= k � � · �
k

,

where

�k := k(k � 1)

Z 1

�1
f2(x)dx� 1

2
k

Z 1

�1
f 0(x)dx.

For various standard distributions including the Normal distribution (but not
the exponential distribution!), the integral

Z 1

�1
f 0(x)dx = lim

x!1
f(x)� lim

x!�1
f(x)

vanishes; in the sequel we assume this is indeed the case.
The above approximation for ES intuitively makes sense. First, it shows

that if the ‘interval’ � is small, then the mean number of singletons equals
the number of realizations k. When � grows, there will be more anonymity,
as reflected by the fact that ES decreases; apparently it does so more or less
linearly in �, with proportionality constant

�k := k(k � 1)

Z 1

�1
f2(x)dx.

Such an approximation can be made arbitrarily precise. If we wish to compute
the �2 term (that is, a quadratic approximation, in �, of ES), we first write
(assuming f(·) to have the desired di↵erentiability properties)

Fi(�) = � · f(i�) +
1

2
�2 · f 0(i�) +

1

6
�3 · f 00(i�).

After considerable calculus we eventually find ES = k � ��
k

+ �

2
¯�
k

, with

¯�
k

:=

1

2

k(k � 1)(k � 2)

Z 1

�1
f3

(x)dx � k(k � 1)

Z 1

�1
f(x)f 0

(x)dx +

k

6

Z 1

�1
f 00

(x)dx,

where it is noticed that integration by parts yields

Z 1

�1
f(x)f 0

(x)dx =

1

2

✓
lim

x!1
f2

(x) � lim

x!�1
f2

(x)

◆
.
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For various distributions, the second and third term vanish, so that we get, as
� # 0,

ES = k � �

✓
k(k � 1)

Z 1

�1
f2

(x)dx

◆
+ �

2
✓

1

2

k(k � 1)(k � 2)

Z 1

�1
f3

(x)dx

◆
+ O(�

3
).

Analogous computations yield

�1 = 1 � �
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◆
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2
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◆
+ O(�

3
),

�2 = �

✓
(k � 1)

Z 1
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3
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2
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(k � 1)(k � 2)

Z 1
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f3

(x)dx

◆
+ O(�

3
);

in addition we have that �j = o(�2) for j = 4, 5, . . ..
For the special case that X corresponds to a Normal distribution, the above

approximations can be explicitly evaluated. The following lemma is useful. It
can be proven by noting that, up to a multiplicative constant, fm(·) is again a
density, m 2 N.

Lemma 6.1 Let X have a normal distribution with mean µ and variance �2.
Then, with m 2 N,

Z 1

�1
fm(x)dx =

1p
m

1

(
p
2⇡�)m�1

.

Observe that these integrals do not involve µ, as could be expected. Inserting
them into our expansion, we thus arrive at an approximation of ES for X
stemming from the Normal distribution:

ES = k ��
k(k � 1)

2�
p
⇡

+�2

k(k � 1)(k � 2)

4
p
3�2⇡

+O(�3).

We see that the larger the variance �2, the higher the number of singletons,
as could have been expected on intuitive grounds; the above relation quantifies
this e↵ect.

Remark 6.2 Similar formulas can be derived for the variance of S. Write, as
before, S =

P
i Si, where the random variable Si equals 1 if there is a singleton

in the interval [i�, (i + 1)�)) and 0 else. It is a standard rule in probability
theory that

Var S =
1X

i=�1

1X

j=�1
Cov(Si, Sj).
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First observe that

1X

i=�1
Cov(S

i

, S
i

) =

1X

i=�1
Var S

i
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1X

i=�1

⇣
ES

i

� (ES
i

)

2
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= k(1 � F
i

(�))

k�1F
i

(�) � k2
(1 � F

i

(�))

2k�2
(F

i

(�))

2

= k � � k(k � 1)

Z 1

�1
f2

(x)dx � � k2
Z 1
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f2

(x)dx + O(�

2
).

It also holds that
X

i 6=j

Cov(Si, Sj) =
X

i 6=j

(E(SiSj)� (ESi)(ESj)) ,

where

E(SiSj) = k(k � 1)(1� Fi(�)� Fj(�))k�2Fi(�)Fj(�),

(ESi)(ESj) = k2(1� Fi(�))k�1(1� Fj(�))k�1Fi(�)Fj(�).

Elementary manipulations now yield that

X

i 6=j

E(S
i

S
j

) = k(k � 1) � 2� k(k � 1)(k � 2)

Z 1

�1
f2

(x)dx + O(�

2
),

X

i 6=j

(ES
i

⇥ ES
j

) = k2 � 2� k2
(k � 1)

Z 1

�1
f2

(x)dx + O(�

2
).

We eventually find

Var S = �(2k2 � 3k)

Z 1

�1
f2(x)dx+O(�2).

We conclude that Var S grows essentially linear in �, for � small. As � # 0,
we have that Var S ! 0, as could be expected from the fact that S approaches
k. Formulas for higher moments can be derived in an analogous fashion.
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6.3.2 Experiments

In our experiments, we work with the following two data sets:

• One data set containing 25,000 records of human heights and weights [81],
obtained in 1993 by a growth survey of 25,000 children from birth to 18
years of age;

• One data set containing all 766,000 birthdays of citizens from the munic-
ipality of Amsterdam.

QQ-plots reveal that weight and height in the first data sets are accurately
approximated by the Normal distribution; for weight, the estimated standard
deviation is 5.289 kg; for height it is 4.830 cm. Also, the birthdays in the second
data set are nearly uniformly distributed over the 365 days of the year (leap
years are ignored).

We sampled 10,000 times k persons from both data sets for height, length
and birthday. Next, we estimated the mean number of singletons ES in these
groups of size k, for di↵erent granularities�. In the tables below these estimates
are in roman, and the corresponding approximations in italics. For weight
and height, these approximations are based on the Normal distribution; more
specifically, the O(�)-approximation is

ES ⇡ k ��
k(k � 1)

2�
p
⇡

and the O(�2)-approximation

ES ⇡ k ��
k(k � 1)

2�
p
⇡

+�2

k(k � 1)(k � 2)

4
p
3�2⇡

;

for birthdays we use the counterparts of these formulae based on the uniform
distribution, as given through (6.3).

The main conclusions from the tables are the following. (i) The approxima-
tions are highly accurate for relatively small � and k. Its performance degrades
for larger � and k, but for quite a large set of parameters the fit remains rea-
sonable. (ii) The O(�2)-approximation performs substantially better than the
O(�)-approximation (where it is noted that, obviously, adding an O(�3)-term
would improve the approximation even more).

6.4 Multivariate distributions

The previous Section considered identifiability in the case where one reveals
a specific single-dimensional attribute. In this Section, we study the case of
multidimensional data. Consider a questionnaire in which one is asked to reveal
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their weight, but in addition also height. It is clear that there is a positive
correlation between weight and height, and the question that arises is to what
extent this correlation a↵ects the identifiability, measured in terms of the mean
number of singletons.

One would expect that the stronger the correlation between the two vari-
ates, the less information the second variate adds to the first variate, thus less
increasing identifiability in terms of the number of singletons. The main finding
of this Section is that this intuition indeed holds; in the special case the two
variates stem from a two-dimensional Normal distribution, we derive explicit
formulas that quantify this e↵ect. The formulas are tested using real data.

6.4.1 Theoretical results
In this Section we consider the case of (X,Y ) having a bivariate Normal dis-
tribution; the joint density f(x, y) is given by

1

2⇡�
X

�
Y

p
1 � %2

exp

 
�

1

2(1 � %2)

"
(x � µ

X

)

2

�2
X

�
2%(x � µ

X

)(y � µ
Y

)

�
X

�
Y

+

(y � µ
Y

)

2

�2
Y

#!
.

Here µX and µY are the means of X and Y , respectively, �2

X and �2

Y are
the corresponding variances, and % is the correlation between X and Y (whose
e↵ect we study in this Section), that is, Cov(X,Y ) = % �X�Y .

In our experiments, the intervals for both coordinates are given by �X and
�Y , respectively. Relying on

Fi,j(�X ,�Y ) := P(X 2 [i�X , (i+ 1)�X), Y 2 [j�Y , (j + 1)�Y )

= �X�Y · f(i�X , j�Y ) +G(�X ,�Y ),

where G(�X ,�Y ) contains higher order terms, we obtain, in precisely the same
way as in the single-dimensional case (see Section 6.3)

ES = k ��X�Y · k(k � 1)

Z 1

�1

Z 1

�1
f2(x, y)dxdy +O((�X�Y )

2).

Using the following lemma, the double integral can be evaluated explicitly.
Its proof is very similar to that of Lemma 6.1.

Lemma 6.3 Let (X,Y ) have a bivariate normal distribution with means (µX , µY ),
variances (�2

X ,�2

Y ) and correlation %. Then
Z 1

�1

Z 1

�1
fm(x, y)dxdy =

1

m

1

(2⇡�X�Y
p

1� %2)m�1

.

We thus obtain the following approximation:

ES = k ��X�Y · k(k � 1)
1

4⇡�X�Y
p
1� %2

+O((�X�Y )
2).
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As before, we observe that the larger the variances �2

X and �2

Y , the higher the
number of singletons. In addition, the formula shows that the more the variates
X and Y are correlated (that is, the closer %, in absolute value, is to 1), the lower
the number of singletons. This is consistent with our intuition: a combination
of two correlated variates can be less identifying than a combination of two
non-correlated variates. If the correlation is 0, then no information on Y is
captured in X, and as a result the mean number of singletons is relatively
high.

6.4.2 Experiments

We again work with the data set containing 25,000 records of human heights and
weights available from [81]. Estimation of the (Pearson-)correlation between
height and length yields % = 0.5028. As before, we sampled 10,000 times k
people from the data set of 25,000 people, who now have to reveal both weight
and height, and we count the number of unique samples.The intervals �W for
weight and �H for height are varied, as indicated in the caption below Fig. 6.4.

The graphs of Fig. 6.4 show that the approximation works excellently for
small intervals �W and �H , and k relatively small (so that, as a consequence,
ES is close to k), and still fine for moderate values of the intervals and k.
Evidently, the fit can be improved by adding the (�W�H)2-term.

In Fig. 6.5 we keep (in the left panel) �H fixed (at 1 cm) and vary �W , and
(in the right panel) we keep �W fixed (at 1 kg) and vary �H . As expected from
Section 6.3, the approximation matches the simulation-based estimates well for
small �W (left panel) and small �H (right panel). In these experiments we
chose k = 10.

6.5 Discussion

This Chapter focused on probabilistic analysis of the number of singletons.
The contribution of this Chapter is threefold: we address the e↵ect of non-
uniformity, quantify the e↵ect of aggregation and assess the impact of correla-
tion between variates.

Regarding the first issue, we have empirically validated approximations that
we developed in Chapter 5; it was concluded that our technique to estimate
the mean number of singletons, doubletons, tripletons, etc. yields reliable esti-
mates. In our experiments, we estimate the Kullback-Leibler (KL) distance by
using data from the entire population, and then approximate the mean number
of singletons (that is, unambiguously identifiable individuals) among k people
sharing the same postal code. The fit of the approximations can probably im-
proved by not estimating the KL distance based on the entire population, but
just on the part of the city the specific postal code is in.
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Regarding the second issue, impact of the interval �, we showed that the
mean number of singletons S can be accurately approximated by polynomial
in �; the linear approximation is ES = k � �k�.

Also, the accuracy of these approximations decreases for events of low prob-
ability; in our framework it remains an open question how those should be
handled. Depending on the practical context, a questionnaire maker could de-
cide not to ask respondents to reveal their precise age if it is higher than, for
example, 79 — allowing the respondent to skip the question or check “79 or
higher”.

Regarding the third issue, we extend the setting of the second issue, that
was a single non-categorical variable, to multiple non-categorical variables. We
show explicitly the e↵ect of the correlation between the variates. As can be
intuitively understood, the higher the correlation, the higher the privacy level.
Our analysis does not cover the impact of correlation between categorical data,
or correlation between categorical and non-categorical data; think of for in-
stance gender and income, or civil status and age.

The accuracy of the latter two approximations can be made arbitrarily
high by adding more terms of the polynomial expansion. The formula for
the mean number of singletons allows various easy estimates. Suppose, for
instance, that X corresponds to weight rounded to multiples of 500 grams, and
for k = 10 we observe that the mean number of singletons is about 8. Then
a small computation tells us that � is about 6.6. Doubling � (to multiples of
1 kilogram) increases the anonymity, in that the mean number of singletons
will be reduced to roughly 6; halving � leads to ES equalling roughly 9. We
propose that this can be used as a (rough) rule of thumb.

Chapter 7 will discuss applications of the theory developed here.
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19.01 18.09 16.39 12.68 10.97 24.40

30 27.75 25.72 22.10 14.39 7.63 3.09
27.68 25.36 20.72 6.80 - 16.40 -62.80
27.78 25.76 22.32 16.80 23.61 97.24

40 35.98 32.49 26.63 15.28 7.14 2.81
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9.47 8.95 7.37 4.74 -0.51 -16.28
9.49 9.01 7.73 6.16 5.16 19.17

20 17.90 16.05 11.72 7.151 3.17 0.90
17.78 15.56 8.90 - 2.19 -24.39 - 90.97

17.92 16.10 12.27 11.28 29.50 245.82
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24.92 19.84 4.59 - 20.81 - 71.62 -224.05
25.40 21.76 16.59 27.17 120.29 975.38
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Figure 6.3: Graphical illustration of accuracy of the O(�)-approximation; ES
as a function of k for height, weight and birthday. The lines correspond to the
estimates resulting from simulation, and the ‘+’ with the O(�)-approximation.
Tables show mean number of singletons for various values of k.
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Figure 6.4: Expected number of singletons, for k = 5, 10, 20, 40, respectively
(k = 30 is skipped due to page layout). The solid lines are the simulation-based
estimates, the dots are the approximations based on the formulas derived in this
Section. Per picture, the first 6 data points correspond to �H = 0.5 cm, the
second 6 data points to�H = 1.0 cm, the third set of 6 data points to�H = 2.0
cm, the fourth set of 6 data points to �H = 5.0 cm, the fifth set of 6 data points
to �H = 10.0 cm, and the last set of 6 data points to �H = 20.0 cm. Within
each group of 6 data points, these correspond to �W = 0.5, 1.0, 2.0, 5.0, 10, 20
kg.
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Figure 6.5: Left panel: e↵ect of �W for �H fixed; right panel: e↵ect
of �H for �W fixed.





7 Practical applications

In this Chapter we will share preliminary ideas on applying in real life the
techniques developed in this thesis. We provide a conceptual framework for
the application of the distribution-informed prediction of anonymity properties
via Kullback-Leibler distances (KL-distances) as developed in Chapter 4 and
Chapter 5. The KL-based predictions can be applied to quasi-identifiers con-
sisting of any combination of numerical variables (e.g. { age + height }) and
categorical variables (e.g. { gender }).

In addition, we discuss application of the techniques developed in Chapter 5
and Chapter 6, which only apply to numerical variables, such as the analysis
of the e↵ect of interval-widths on identifiability (see Chapter 6). The latter
enables pollsters, for example, to protect the anonymity of respondents by
deciding beforehand, based on quantifications, whether to ask respondents to
reveal, say, their exact age or rather the age group to which they belong —
instead of collecting exact ages and having respondents trust their unknown
pollster that she will make the data less precise afterwards. Quantifications
remove some of the pollster’s uncertainty that may otherwise have led the
pollster to choose an overly wide interval (while it may be beneficial for the
analysis to have more specific information), or perhaps to simply ignore the
issue and ask for exact data that puts the respondent at risk (or at least, leave
them with a feeling of unease).

The remainder of this Chapter is organized as follows: Section 7.1 will in-
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troduce our preliminary model; Section 7.2 will discuss ‘non-functional’ aspects
crucial to real-life application of the model; Section 7.3 will describe steps to
take toward implementing a real-life application; Sections 7.4 and 7.5 will dis-
cuss various practical aspects that need to be taken into account, including the
limitations of our work; and Section 7.6 will conclude this Chapter. For further
inspiration we refer to the example analysis of anonymity in Appendix B, that
considers a questionnaire observed in real life.

Remark 7.1 Measuring unidentifiability is measuring identifiability. Our tech-
niques are intended for privacy protection but can be used directly for purposes
of identifiability as well, such as in marketing and forensics. Our perspective,
however, is that of privacy protection.

7.1 Preliminary model

We now introduce a preliminary conceptual framework for applying distribution-
informed prediction techniques. Figure 7.1 shows the framework, distinguishing
a repository (that stores Kullback-Leibler distances), policy (decisions about
what data (not) to disclose, collect and share), data holder(s) (anyone with
access to personal data) and policy maker(s) (anyone deciding about the pro-
cessing of personal data, notably including the subjects themselves). We dis-
tinguish four tasks, chronologically ordered: publish, query, analyze and decide.
These will be explained below.
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Data holder

Repository

1. publish
QID = X
Population = Y
KL-distance = Z

Policy maker

Policy
(collection, sharing)

4. decide 

2. query
QID = X
Population = Y
KL-distance = ?

3. analyze 

Figure 7.1: Preliminary model for applying distribution-informed privacy pre-
dictions as part of privacy policy making.
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7.1.1 Data holder

The data holder collects and stores personal information about individuals.
Although entities that are legally assigned the role data controller or data
processor can act as data holder, not only they can. For example, an individual
can be data holder of his/her own personal data. To prevent confusion with the
legal domain we use the label “data holder”, consistent with Solove [74] (see
Section 1.1). In our model, anyone having access to a collection of personal
data can act as data holder.

The disclosure of information by a person to a data holder establishes a con-
text conform Nissenbaum [61], including context-relative informational norms,
compliancy to which constitutes contextual integrity; i.e., that the disclosed
information does not end up in a situation where presence of it constitutes a
privacy violation (as perceived by data subjects or wider society, but not neces-
sarily made explicit in laws; also, note that translating implicit, subjective and
changing contextual roles into a disclosure policy is non-trivial). The publica-
tion of a statistic about a population of which that person is part is unlikely to
violate privacy law. In the Netherlands, for example, privacy law only applies
to the processing of data that can be traced to individuals without consider-
able e↵ort. The practical meaning of ‘considerable e↵ort’ remains unclear to
us; from a privacy perspective we hope it means no less than ‘disproportionate
to potential gain’. Such publication might, however, violate a context-relative
informational norm, for example when the person does not agree with their
data being part of a openly published statistic (such as in our model). Addi-
tional work is needed to assess the moral and legal risk in openly publishing
statistics computed from existing collections of personal data.

Task:

• publish: submit to repository one or more Kullback-Leibler distances,
accompanied by specification of the QID and population.

7.1.2 Policy maker

Policy maker assesses privacy risk and decides what data (not) to collect and
what data (not) to share. The decision is influenced by legal norms and, if
data holder and policy maker are the same entity, the context-relative informa-
tional norms between data holder and the persons about whom the data holder
stores data. As a special case, policy maker can be a self-assessing individual
that wants to decide what (combined) information not to disclose during, for
example, an anonymous questionnaire.
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Task:

• query: request from repository the Kullback-Leibler distance (KL-distance),
given a specification of the QID and population;

• analyze: apply our methodology to analyze QIDs;

• decide: decide what data (not) to collect and what data (not) to share.

Presumably, these tasks will be part of a more comprehensive privacy risk
management process that takes into account existing information collection
and sharing that might influence the privacy risk involved in the per-instance
context to which our methodology is most relevant.

7.1.3 Repository

The repository is a publication facility that allows the data holder to submit
KL-distances, and the policy maker to query KL-distances. The repository
stores three-tuples consisting of a description of the QID, a description of the
population and the KL-distance. While KL-distance is a number, the descrip-
tion of QID and population will be less trivial. For clarity of exposition, we
will assume that policy maker and data holder use the same ontolo-
gies and data structures; i.e., they have a shared vocabulary. Under that
assumption, the QID and population can be defined in terms of that vocab-
ulary. Consider a shared ontological concept and data structure Citizen that
contains, among others, the attributes PostalCode, Gender, and BirthYear ;
second, that population can be specified in terms of City ; and third, that data
holder stores this data for all citizens of Amsterdam. To publish the KL-
distance that applies to citizens of Amsterdam regarding QID = {PostalCode,
Gender, BirthYear}, data holder first computes the KL-distance and sends to
the repository the following message:

QID = {PostalCode, Gender, BirthYear}

population = {City=Amsterdam}

KL-distance = ...

Data holder may also publish KL-distances for less specific QIDs. For example,
leaving out Gender :

QID = {PostalCode, BirthYear}

population = {City=Amsterdam}

KL-distance = ...

In addition, data holder may also publish KL-distances for subpopulations. For
example, only including persons that own a car:
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QID = {PostalCode, BirthYear}

population = {City=Amsterdam, CarOwner=yes}

KL-distance = ...

The use and applicability of various QIDs and various subpopulations will
depend on the (existence of) information collection and sharing to which the
involved persons are exposed.

7.2 Issues

7.2.1 Assess privacy risk of KL-repository itself

The purpose of our model is privacy protection, but possibly, the model poses
privacy risk itself. At this point, we do not know if or how a public repository
of KL-distances might be abused. As we noted, measuring unidentifiability is
equivalent to measuring identifiability, and our techniques might be applied
for purposes of identifiability rather than unidentifiability. We expect that
smallness of populations, as determined by the amount of information in the
QID, will be a key issue in deciding what KL-distances (not) to publish. A
tradeo↵ exists between accuracy of prediction (more specific population = more
accurate prediction) and protecting against use for identifiability (less specific
population = less usable for identifiability).

7.2.2 Disputes

In a perfect world, there are no errors in the data from which KL-distances
are computed, and the data covers complete populations. In real life, errors do
occur and coverage is often incomplete. The mileage will vary between di↵erent
data holders. The Dutch municipal registry o�ces, for example, will tend to
cover the complete population within their municipality, while a corporate data
set might only cover the consumers within that population; and not only within
the municipality where they are located, but consumers from any location.

In the occasion of multiple data holders submitting di↵erent KL-distances
for the same QID and population, a decision must be made which information
to use. We consider this beyond the scope of our thesis.

7.2.3 Incentives

For policy makers, the legal obligation to comply with privacy law may be in-
centive to publish KL-distances: e.g., if the policy maker wants to legally avoid
collecting personal data, then, under Dutch privacy law, the data collected
must not be traceable to individuals without e↵ort that is disproportionate to
the risk associated with such disclosure. The policy maker may be motivated
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to apply our methods In order to know to what extent data is traceable to indi-
viduals. For some policy makers, there may be a moral or marketing-inspired
desire to comply with context-relative informational norms. For the special
case where an individual person maps to the policy maker actor, the desire to
know what (combined) information is (quasi-)identifying to a certain extent
will be su�cient incentive.

7.3 What steps to take next

The following subsections describe the steps that need to be taken next to apply
our model in real life, after the issues described above have been (su�ciently)
resolved.

7.3.1 Make an inventory of data holders and their data

An inventory is needed of data holders and their data. Specifically, for each
relevant data set, a list of columns and description of the population about
which data is present need to be established. In the Netherlands, a potential
starting point is the Dutch Data Protection Agency (CBP), that maintains
a registry of data protection o�cers and a registry of (reported) processing
of personal data. Other pointers for the Dutch can be found in the report
‘Onze digitale schaduw’ (2009) [70] commissioned by the Dutch Data Protection
Agency and in the report ‘iOverheid’ (2011) established by the Dutch Scientific
Council for Government Policy (WRR) [27]. For the UK, pointers can be found
in the report ‘Database State’ (2009) [3] commissioned by the Joseph Rowntree
Reform Trust.

Then, a second inventory is needed: a list of the (combined) information
that pollsters ask for during anonymous questionnaires (whether online or of-
fline), and the information that is shared in contexts of science and policy re-
search. In the Netherlands, both Statistics Netherlands and the KNAW/NWO
Data Archiving and Networked Services (DANS) institute1 may provide point-
ers. This second inventory can be jump-started through a simple brainstorm
process.

By matching both inventories, and taking into account privacy risks of the
KL-repository itself (see Section 7.2.1) and the desired scope of the repository,
it needs to be decided which QIDs and populations to include/exclude. The-
oretically, the scope of the repository could be unlimited: one could attempt
to establish a single nation-wide or even global repository that contains KL-
distances for every possible QID and every possible population. Practically,
the scope is limited to data holders and policy makers that (are able to) share
a data vocabulary (see Section 7.1.3) and are also willing to participate. It is

1Website: http://www.dans.knaw.nl/
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probably sensible to limit a first attempt at a repository to common QIDs and
common populations; both of which can be established via the inventories and
common sense.

7.3.2 Build software tools

Information technology will need to be built. First, a repository needs to be
set up. Second, software for KL-analysis and publication to the repository
needs to be engineered and distributed to data holders (tools for computing
KL-distances from data stored in MySQL, MSSQL, etc.). Third, software for
performing distribution-informed analysis is needed (possibly local, possibly
remote). Fourth, the system needs to be maintained, and policy maker and
data holder should be able to get support when needed.

7.4 Other aspects

Apart from above considerations, several other aspects need to be taken into
account. Two factors that play an important role in quasi-identifier analysis
are the granularity, or interval width, of variables in a quasi-identifier; and the
correlation between variables in a quasi-identifier. Regarding the former, obvi-
ously the more fine-grained the data is, the more identifying a quasi-identifier
will tend to be. The methodology of Section 6.3 can be applied to quantify
this e↵ect. Regarding the latter, the technique developed in Section 6.4 can
be used to predict identifiability in case there is substantial correlation be-
tween multiple non-categorical, numerical variables within the quasi-identifier.
In principle the same KL-based technique can be used as in the single-variate
case, as long as the correlation between the variables is taken care of adequately
as demonstrated in Section 6.4.

Lastly, the repository needs to be protected from misinformation (e.g. un-
intentionally incorrect KL-distances being submitted) and disinformation (in-
tentionally incorrect KL-distances, e.g. to make privacy risk appear less than it
really is). We consider this to be outside the scope of our thesis, but emphasize
that it must be addressed when working toward a real-life implementation.

7.5 Limitations and future work

Our distribution-informed prediction techniques require that Kullback-Leibler
distances can be computed between the Uniform distribution and the actual
distribution. To know the actual distribution, access is required to (personal)
data. That data must be representative, in terms of the quasi-identifier vari-
ables under consideration, for the population for which the quasi-identifier anal-
ysis is performed. As mentioned in Section 7.2.2, the data ideally provides full
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coverage of that population, and has few errors. If it is not possible to get ac-
cess to that data, or the data contains too many errors in the variables present
in the quasi-identifier, the distribution-informed techniques cannot be applied.
Also, note that while an individual may use these techniques to get an on-
the-average estimate of identifiability of members of the population to which
he/she belongs, that individual may self have outlier values and be more iden-
tifiable than the estimate suggests. In a population where nearly everyone has
blue eyes or brown eyes, disclosing that one has green eyes is obviously more
revealing than on the average.

Furthermore, in the analysis of singletons outlined in Chapter 5, notably
Figure 5.1, it is observed that our approximations become inaccurate in pres-
ence of strong outliers. In our example of age distributions, our approximations
showed accurate for the range 0-79; we were unable to obtain accurate results
when including ages above 79. Clearly, this implies that our methodology is in-
su�cient by itself for performing exhaustive privacy analysis. We propose that
other methods and techniques that do su�ciently take outliers into account
are applied together with ours.

In Chapter 6, note that the O(�) approximation techniques for determining
the e↵ects of interval width, as Figure 6.3 shows for height, width and birthday,
become less accurate when predicting outcomes for large interval widths. In
addition, the techniques we proposed for taking into account the e↵ects of
correlation between variables have only been examined for the setting where
the variables have a bivariate normal distribution. These aspects must be
considered when applying these techniques in practice.

7.6 Conclusion

Although distribution-informed prediction is not the only method we developed
throughout Chapter 4, 5 and 6, it is our most innovative result. In this Chapter,
we primarily focused on that result and share preliminary ideas about how to
apply it in practice. Additional work is needed: first, the privacy risk of a
public repository of Kullback-Leibler distances computed from sets of personal
data needs to be assessed. Second, inventory needs to be made of (candidate)
data holders, and of the QIDs and populations that are most relevant to be
subjected to privacy-analysis. We provided pointers to information sources
that we believe are useful during these activities.





8 Conclusions and future
work

In our increasingly computer-networked world, more and more personal data is
collected, linked and shared. This raises questions about privacy — i.e. about
the feeling and reality of enjoying a private life in terms of being able to exercise
control over the disclosure of information about oneself. In attempt to provide
privacy, databases containing personal data are sometimes de-identified, mean-
ing that obvious identifiers such as Social Security Numbers, names, addresses
and phone numbers are removed. In microdata, where each record maps to
a single individual, de-identification might however leave variables that, com-
bined, can be used to re-identify the de-identified data.

To establish the case for quantified privacy analysis, we first performed
an empirical study on the identifiability of nameless hospital intake data and
welfare fraud data about Dutch citizens, using large amounts of personal data
collected from municipal registry o�ces. We showed, through quantifications,
the possibility of large di↵erences in actual privacy of citizens depending on
the municipality where they live.

We developed a range of novel techniques for predicting aspects of anonymity,
building on probability theory, and specifically birthday problem theory and
large deviations theory. We empirically validated our formulas using public
data insofar possible, and using our privately collected data insofar necessary
to ensure coherence of research.

In the final Chapter we gave preliminary ideas for applying our techniques
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in real life. We feel these are suitable and useful input to the privacy debate;
practical application will depend on competence and willingness of data holders
and policy makers to correctly identify quasi-identifiers. In the end, it remains a
matter of policy what value of k can be considered su�ciently strong anonymity
for particular personal information.

We propose three directions for future research:

• Our formulas may have uses outside the context of data anonymity, such
as in the context of communication anonymity. KL-distance based pre-
diction, for example, might show to be useful in contexts handling distri-
butions related to aspects of packets or network flows that are relevant
to anonymity of communication. We do not know whether this is the
case for onion routing (e.g. Tor), garlic routing, Crowds, MUTE, I2P or
any other existing system for anonymous communication. Possibly, our
methods allow creation of a new system, or have a function under envi-
ronmental assumptions di↵erent from those under which existing systems
are designed, operated and used;

• Our formulas may have uses outside the context of privacy altogether:
notably, forensics and marketing. In forensics, for example, the question
might be raised how probable it is that some piece of evidence is unique
to a person. Similarly, a marketeer might wonder how probable it is
that some piece of information is unique to a person. Especially the
formulas developed in Chapter 4 and Chapter 5 may be relevant to those
contexts. Whether this is true, and whether other parts of our work have
application outside privacy, needs further research;

• Study is needed to show what sort of background information is easy to
obtain, and what the impact is on re-identifiability. What possibilities do
various types of adversaries — corporate, government, individual — have
to obtain information? How does this vary between adversaries targeting
specific individuals and adversaries targeting anyone who’s data they are
able to obtain?

We hope others will be inspired to build forth on our work, as we too built
forth on the work of others.



A ⇣(k,N) for k = 1 . . . , 50
and N = 1, . . . , 20
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B Example analysis:
questionnaire

This Appendix discusses an internet-based questionnaire that was observed in
real life and asks anonymous respondents to reveal various demographics. The
questionnaire was held in June 2010 by the Concertgebouw (the famous concert
hall in Amsterdam) and concerned non-sensitive topics. We use it here as a toy
example. We will show what information respondents are asked to reveal, and
analyze how anonymity decreases by each piece of information the respondent
reveals.

Of course, if we were to assume that the pollster does not try to trace survey
data to named individuals and that the survey data is not sold or compromised,
this analysis would not be needed: there would simply not be any threat of
identification to protect against. But we choose to assume, more diligently,
that the pollster might try to trace survey data to named individuals, that the
data might get sold and that the data might get compromised. Under those
assumptions, analysis of anonymity is needed.

First, as shown in Figure B.1, the respondent is asked to reveal full postal
code (‘PC6’ postal code: four digits and two letters), gender (choice between
male and female), and Year of Birth (‘YoB’, four digits). Based on empirical
data of 2,777,953 Dutch citizens obtained from 16 municipalities (see Chapter 3
and Chapter 6), Table B.1 shows per anonymity set size 1  k  10: the
number of citizens that are in an anonymity set of size k, and: their percentage
of the total sample population. Results: 1,733,282 citizens, ⇠62% of our sample
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population, are unambiguously identifiable by this data alone; another 646,566,
23% of the total, are identifiable up to a group of two persons. In total, ⇠99.2%
of our sample population has an anonymity set of size 1  k  10. In other
words, the questions observed in this first screen already pretty much put the
respondent at risk of perfect identifiability. In contrast, if the pollster would
have asked to reveal not the full ‘PC6’ postal code but only the four-digit
‘PC4’ postal code, the numbers look significantly di↵erent: see Table B.2.
In that case, most respondents would at this point in the questionnaire still
have had much stronger anonymity; only 4,164 citizens would still have been
unambiguously identifiable; and 5,066 would have been identifiable up to a
group of two persons. In total, only ⇠2.6% of our sample population would
have been in an anonymity set of size 1  k  10. Reversely, ⇠97.4% would
have been in an anonymity set of size k > 10, which may still be su�cient for
a non-sensitive questionnaire.

To perform such analysis for the total Dutch population without requiring
that the anonymity analyst him/herself has access to microdata of all Dutch
citizens, our distribution-informed predictions could be applied; see Chapter 4
and Chapter 5. This requires cooperation between the analyst and the data
holder(s), as described in Chapter 7.

For the remainder of the questionnaire we do not have the relevant micro-
data and therefore cannot determine anonymity set sizes by simple counting.
We can, however, estimate upper bounds of anonymity set sizes by looking at
the most common value per demographic. The number of citizens sharing that
value is the upper bound anonymity set size. What the most common value is
and how many citizens share that value can in many cases be looked up from
a public statistics repository such as Statline1. However, many of the possible
answers observed in this particular questionnaire cannot be directly linked to
statistics published in Statline; we necessarily permit ourselves some creative
freedom in making estimations based on our best judgement. We think that it
su�ces for the illustrative purpose of this Appendix; real life applications may
require more diligence.

We now reset our anonymity analysis and start o↵ with the maximum
anonymity set size for this questionnaire, which is the total Dutch popula-
tion: 16 million citizens. At the end of this Appendix we will consider again
the gender, YoB and PC4 postal code.

Remark B.1 From here on, numbers will indicate ‘orders of magnitude’-e↵ects.
Higher precision, more elaborate analysis requires additional input data that en-
ables the use of methods such as the distribution-informed prediction developed
in Chapter 4, Chapter 5 and Chapter 7.

1Website: http://statline.cbs.nl/
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Figure B.1: Revealing demographics: questionnaire screen 1.

Table B.1: Results for 1  k  10;
QID={PC6 + gender + YoB}

k # of citizens % of total

1 1,733,282 62.4%
2 646,566 23.3%
3 210,963 7.6%
4 79,504 2.9%
5 36,370 1.3%
6 19,200 0.7%
7 11,844 0.4%
8 8,432 0.3%
9 5,490 0.2%
10 4,260 0.2%

TOTAL: 2,755,911 99.2%

Table B.2: Results for 1  k  10;
QID={PC4 + gender + YoB}

k # of citizens % of total

1 4,164 0.2%
2 5,066 0.2%
3 5,691 0.2%
4 6,372 0.2%
5 6,925 0.3%
6 7,848 0.3%
7 7,742 0.3%
8 8,392 0.3%
9 9,450 0.3%
10 10,310 0.4%

TOTAL: 71,960 2.6%
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The next screen of the questionnaire is shown in Figure B.2. The respondent
is asked to reveal cultural background (zero or more answers can be given:
Dutch, Southern European, Moroccan, Eastern European, Surinamese, Asian,
African, Cape Verdean, Western European, Turkish, and/or ‘Other, please
specify’) and level of completed or current education (one answer must be
given: primary education, pre-vocational, secondary general education, middle
vocational, higher secondary education or pre-university secondary education,
higher vocational, or academic university). In the Netherlands, the largest
cohort in education level is middle vocational: ⇠30% has middle vocational
education (i.e., ‘MBO’ at levels 2, 3 and 4 combined; alas, no statistic was
present about MBO 1 or MBO 1-4 combined). If the respondent’s educational
level is vocational, revealing that decreases his/her anonymity by a factor of
100/30 ⇡ 3.33. The anonymity set of 16 million Dutch citizens is hence divided
by 3.33 and reduced to 4.8 million citizens. For all other educational levels,
the decrease in anonymity is larger. For self-perceived cultural background,
we could not find public statistics. However, Statline does contain statistics
about non-immigrants and immigrants (citizens known to have at least one
parent or grandparent of non-Dutch nationality are counted as immigrant). The
largest cohort is non-immigrants: ⇠79%. If being non-immigrant, revealing
that decreases anonymity by a factor of 100/79 ⇡ 1.26. Hence, the anonymity
set is reduced to 3.8 million citizens. (Revealing that one is immigrant decreases
anonymity by a factor of 100/21 ⇡ 4.76, and would have reduced the anonymity
set to 1 million citizens.)

In the next screen, shown in Figure B.3, the respondent is asked to reveal
his/her living situation (one answer must be given: adult(s) with children living
at home; two or more adults without children; living at home or with caretakers;
single or LAT-relationship; student home; or ‘Other, please specify’) and the
number of children (zero or more answers can be given: no children; number
of children aged 1-3; aged 4-7; aged 8-12; aged 13-18; aged 18+). For living
situation, the largest cohort is the multiple-person household with children:
⇠33%. If being in a multiple-person household with children, revealing that
decreases anonymity by a factor of 100/33 ⇡ 3. Hence, the anonymity set is
reduced to 1.2 million citizens. For numbers of children per age group we were
not confident about a way to link the questionnaire answers to statistics present
in Statline. Alas, we must skip this question.

Lastly, in Figure B.4, the respondent is asked to reveal the category or cat-
egories his/her profession belongs to (zero or more answers can be given: high
school student; student; pensioner; unemployed; government; education or sci-
ence; non-profit; cultural sector; media or journalism; commercial; healthcare;
musician or singer; self-employed), and gross household income (one answer
must be given: less than € 23,000; € 23,000 to € 34,000; € 34,000 to € 56,000;
more than € 56,000; or ‘I would rather not say’). The largest professional co-
hort is ‘corporate’: ⇠37%. If employed in the corporate sector, revealing that
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Figure B.2: Revealing demographics: questionnaire screen 2.

Figure B.3: Revealing demographics: questionnaire screen 3.
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decreases anonymity by 100/37 ⇡ 2.7. Hence, the anonymity set is reduced to
470k citizens. For gross household income, ‘more than 56,000’ is the largest
cohort: ⇠44%. If having a gross household income of more than € 56,000,
revealing that decreases anonymity by a factor of 100/44 ⇡ 2.3. Hence, the
anonymity set size is reduced to 94k citizens. Here, analysis of interval width,
as developed in Chapter 6, might have been of help during the development of
the questionnaire, to establish income intervals that are useful to the pollster
but also not needlessly identifying from the respondent’s point of view.

Figure B.4: Revealing demographics: questionnaire screen 4.

For the fictional QID = {PC4 + gender + YoB}, the most common value
in our sample population is {1056 + F + 1981}: ⇠0.002% of the total Dutch
population. Revealing that information decreases anonymity by a factor of
100/0.002 = 50,000. Hence, the anonymity set is reduced to four citizens: see
Table B.3. In conclusion, anonymous respondents should expect that their
answers can be traced down to a group of four or less individuals.

Note, however, that we explicitly treated the questions as if they were inde-
pendent from each other. In real life, variates such as income and YoB might
be correlated. Revealing one variate then also partially reveals the other. And
hence, revealing the other adds less new information than if both were not cor-
related. Such e↵ects may result in a larger anonymity set, and thus in a more
optimistic outlook than the expectation stated above; i.e., that respondents’
answers can be traced down to a group of four or less individuals. The work
developed in Chapter 6 may be helpful in examining such e↵ects.
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Table B.3: Estimated decrease in anonymity per question

Demographic Largest cohort Decrease k Possible identities

- - - 16,000,000

education ‘vocational’ 3.33 4,804,804

+ cultural background ‘non-immigrant’ 1.26 3,813,337

+ living situation ‘1+ household w/children’ 3 1,271,112

+ work ‘corporate sector’ 2.7 470,782

+ gross income ‘more than € 56,000’ 2.3 204,347

+ {PC4+gender+YoB} ‘1056 + F + 1981’ 50,000 4

In reality, probably hardly anyone belongs to the largest cohort in every
question. The proper way to interpret the result of this (partial and rough)
analysis is to say: “at best, a respondent honestly answering all questions in this
questionnaire is indistinguishable from three other persons; but most respon-
dents will belong to a smaller anonymity set”. Additional analysis is needed
to determine what anonymity remains if instead of disclosing PC4, gender and
YoB, the respondent would only disclose, say, municipality, gender and YoB.
Of course, anyone attempting to trace the survey data to individuals would
also need to have access to identified microdata containing all these columns.
Despite attempts to make an inventory of data collections throughout soci-
ety [3, 27, 70], there is no complete picture about what microdata is processed
and by whom. When collecting data about sensitive topics such as politics,
health and sex habits, it probably makes sense to assume the worst-case sce-
nario: i.e., that somewhere, an identified table exists that contains all columns,
all filled with truthful values (as many governments seek to create). When col-
lecting data about non-sensitive surveys, more optimistic assumptions might
be justified; however, it should not be disregarded that leaks of non-sensitive
survey microdata may itself help accomplish that worst-case scenario.
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[60] A. Nicoläı. Kst99754: Modernisering gemeentelijke basisadministratie per-
soonsgegevens, 2006.

[61] H. Nissenbaum. Privacy in context: technology, policy, and the integrity
of social life. Stanford Law Books, 2010.

[62] T. S. Nunnikhoven. A birthday problem solution for nonuniform birth
frequencies. The American Statistician, 46(4):pp. 270–274, 1992.

[63] NVVB. Schema voor schriftelijke verzoeken om gegevensverstrekking uit
de GBA, January 2010.



120 BIBLIOGRAPHY

[64] A. Pfitzmann and M. Hansen. A terminology for talking about privacy
by data minimization: Anonymity, unlinkability, undetectability, unob-
servability, pseudonymity, and identity management. http://dud.inf.tu-
dresden.de/literatur/Anon Terminology v0.34.pdf, Aug. 2010. v0.34.

[65] B. Pierce. Foundational Calculi for Programming Languages, pages –.
CRC Press, Boca Raton, FL, 1997.

[66] W. L. Prosser. Privacy. California Law Review, 48(3), 1960.

[67] M. Reiter and A. Rubin. Crowds: Anonymity for web transactions. ACM
Transactions on Information and System Security, 1(1), June 1998.

[68] M. A. Rothstein. Is deidentification su�cient to protect health privacy in
research? The American Journal of Bioethics, 10(9):3–11, 2010.

[69] P. Rust. The e↵ect of leap years and seasonal trends on the birthday
problem. The American Statistician, 30:197–198, 1976.

[70] B. W. Schermer and T. Wagemans. Onze digitale schaduw, Jan. 2009.

[71] S. Schneider and A. Sidiropoulos. Csp and anonymity. In E. Bertino,
H. Kurth, G. Martella, and E. Montolivo, editors, ESORICS, volume 1146
of Lecture Notes in Computer Science, pages 198–218. Springer, 1996.

[72] A. Serjantov and G. Danezis. Towards an information theoretic metric
for anonymity. In R. Dingledine and P. Syverson, editors, Proceedings of
Privacy Enhancing Technologies Workshop (PET 2002). Springer-Verlag,
LNCS 2482, April 2002.
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Abstract (English)

In our increasingly computer-networked world, more and more personal data is
collected, linked and shared. This raises questions about privacy — i.e. about
the feeling and reality of enjoying a private life in terms of being able to exercise
control over the disclosure of information about oneself. In attempt to provide
privacy, databases containing personal data are sometimes de-identified, mean-
ing that obvious identifiers such as Social Security Numbers, names, addresses
and phone numbers are removed. In microdata, where each record maps to
a single individual, de-identification might however leave columns that, com-
bined, can be used to re-identify the de-identified data. Such combinations of
columns are commonly referred to as Quasi-IDentifiers (QIDs).

Sweeney’s model of k-anonymity addresses this problem by requiring that
each QID value, i.e., a combination of values of multiple columns, present in
a data set must occur at least k times in that data set, asserting that each
record in that set maps to at least k individuals, hence making records and
individuals unlinkable. Many extensions have been proposed to k-anonymity,
but always address the situation in which data has already been collected and
must be de-identified afterwards. The question remains: can we predict what
information will turn out to be identifiable, so that we may decide what (not)
to collect beforehand?

To build a case we first inquired into the (re-)identifiability of hospital in-
take data and welfare fraud data about Dutch citizens, using large amounts of
data collected from municipal registry o�ces. We show the large di↵erences
in (empirical) privacy, depending on where a person lives. Next, we develop
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a range of novel techniques to predict aspects of anonymity, building on prob-
abilistic theory, and specifically birthday-problem theory and large-deviations
theory.

Anonymity can be quantified as the probability that each member of a group
can be uniquely identified using a QID. Estimating this uniqueness probability
is straightforward when all possible values of a quasi-identifier are equally likely,
i.e., when the underlying variable distribution is homogenous. We present an
approach to estimate anonymity for the more realistic case where the variables
composing a QID follow a non-uniform distribution. We present an e�cient
and accurate approximation of the uniqueness probability using the group size
and a measure of heterogeneity called the Kullback-Leibler distance. The ap-
proach is thoroughly validated by comparing the approximation with results
from a simulation using the real demographic information we collected in the
Netherlands.

We further describe novel techniques for characterizing the number of sin-
gletons, i.e., the number of persons have 1-anonymity and are unambiguously
(re-)identifiable, in the setting of the generalized birthday problem. That is,
the birthday problem in which the birthdays are non-uniformly distributed
over the year. Approximations for the mean and variance are presented that
explicitly indicate the impact of the heterogeneity, expressed in terms of the
Kullback-Leibler distance with respect to the homogeneous distribution. An
iterative scheme is presented for determining the distribution of the number of
singletons. Here, our formulas are experimentally validated using demographic
data that is publicly available (allowing our results to be replicated/reproduced
by others).

Next, we study in detail three specific issues in singletons analysis. First, we
assess the e↵ect on identifiability of non-uniformity of the possible outcomes.
Suppose one has the ages of the members of the group; what is the e↵ect on
the identifiability that some ages occur more frequently than others? Again, it
turns out that the non-uniformity can be captured well by a single number, the
Kullback-Leibler distance, and that the formulas we propose for approxima-
tion produce accurate results. Second, we analyze the e↵ect of the granularity
chosen in a series of experiments. Clearly, revealing age in months rather than
years will result in a higher identifiability. We present a technique to quantify
this e↵ect, explicitly in terms of interval. Third, we study the e↵ect of corre-
lation between the quantities revealed by the individuals; the leading example
is height and weight, which are positively correlated. For the approximation
of the identifiability level we present an explicit formula, that incorporates the
correlation coe�cient. We experimentally validate our formulae using publicly
available data and, in one case, using the non-public data we collected in the
early phase of our study.

Lastly, we give preliminary ideas for applying our techniques in real life.
We hope these are suitable and useful input to the privacy debate; practical
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application will depend on competence and willingness of data holders and
policy makers to correctly identify quasi-identifiers. In the end, it remains a
matter of policy what value of k can be considered su�ciently strong anonymity
for particular personal information.





Abstract (Dutch)

In onze steeds verdergaand verbonden wereld worden meer en meer persoons-
gegevens verzameld, gekoppeld en gedeeld. Hierdoor dringen zich vragen op
over privacy — over het gevoel en de realiteit van de persoonlijke levenssfeer
en het invloed kunnen uitoefenen over verspreiding van persoonlijke informatie.
Omwille van privacy worden databases soms gedëıdentificeerd, dat wil zeggen:
ontdaan van evident identificerende informatie zoals Burger Service Nummers,
namen, adressen en telefoonnummers. Echter, in microdata, waarbij records
informatie bevatten op individueel niveau, kunnen na dëıdentificatie kolom-
men achterblijven die in combinatie zouden kunnen worden gebruikt om de
gedëıdentificeerde data te heridentificeren. Zulke combinaties van kolommen
worden ‘Quasi-IDentifiers’ (QIDs) genoemd.

Sweeney’s model van k-anonimiteit adresseert dat probleem door te waar-
borgen dat elke QID-waarde in een tabel ten minste k keren in die tabel voor-
komt, waardoor elk record in de tabel niet valt te herleiden tot minder dan k
verschillende personen en dus onlinkbaarheid ontstaat. Er zijn diverse uitbrei-
dingen voorgesteld van k-anonimiteit, maar die zijn alleen bruikbaar in een situ-
atie waarin vooraf gegevens zijn verzameld en er achteraf wordt gëıdentificeerd.
De vraag blijft: valt te voorspellen welke gegevens quasi-identificerend zullen
zijn, zodat we vooraf kunnen besluiten die gegevens niet, of op minder fijnkor-
relig niveau, te verzamelen?

Ter onderbouwing van het probleem is eerst onderzoek gedaan naar heri-
dentificeerbaarheid van Nederlandse persoonsgegevens over ziekenhuisopnames
en bijstandsfraude, gebruikmakend van een grote hoeveelheid gegevens uit Ge-
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meentelijke Basis Administraties. We tonen aan dat er in deze voorbeelden
grote verschillen bestaan in privacy, afhankelijk van de gemeente waar iemand
woont. Vervolgens zijn nieuwe technieken ontwikkeld om eigenschappen van
anonimiteit te voorspellen, voortbouwend op kansrekening en in het bijzonder
de ‘birthday paradox’ en ‘large deviations theory’.

Anonimiteit kan worden gekwantificeerd als de kans dat elk lid van een
groep uniek kan worden gëıdentificeerd via een QID. Het schatten van deze
uniciteitskans is eenvoudig wanneer alle mogelijke QID-waarden even waar-
schijnlijk zijn, dus, wanneer de onderliggende verdeling homogeen is. Dit werk
presenteert een nieuwe aanpak voor het schatten van anonimiteit voor het meer
realistische scenario waarin de verdeling van QID-waarden heterogeen is. Een
e�ciënte en accurate benadering van de uniciteitskans wordt gepresenteerd,
gebruikmakend van groepsgroottes en Kullback-Leibler afstanden (een maat
van heterogeniteit). Het gepresenteerde wordt grondig gevalideerd door de be-
nadering te vergelijken met uitkomsten van een simulatie gebaseerd op echte
demografische gegevens die in Nederland zijn verzameld.

Verder worden nieuwe technieken beschreven om het aantal ‘singletons’ te
karakteriseren, dat wil zeggen, het aantal personen dat 1-anonimiteit heeft en
dus ondubbelzinnig (her)identificeerbaar is, in het ‘generalized birthday pro-
blem’. Dat wil zeggen, het ‘birthday problem’ waarbij geboortedagen niet-
uniform over het jaar zijn verdeeld. Benaderingen voor het gemiddelde en de
variantie worden gepresenteerd die een expliciete indicatie geven van de im-
pact die heterogeniteit op anonimiteit heeft, in termen van de Kullback-Leibler
afstand ten opzichte van de homogene verdeling. Een iteratief schema wordt
gepresenteerd om de verdeling van het aantal singletons te bepalen. De for-
mules zijn experimenteel gevalideerd via demografische gegevens die openbaar
beschikbaar zijn.

Vervolgens worden drie specifieke aspecten van de analyse van singletons
in detail bestudeerd. Ten eerste is het e↵ect bestudeerd dat niet-uniformiteit
van een verdeling heeft op de mogelijke uitkomsten. Stel dat men de leeftijden
van alle leden van een groep kent: wat is het e↵ect op identificeerbaarheid dat
sommige leeftijden vaker voorkomen dan andere? Opnieuw blijkt dat de hete-
rogeniteit goed kan worden beschreven via één enkel getal, de Kullback-Leibler
afstand, en dat de uitkomsten van de formules accuraat zijn. Ten tweede is het
e↵ect van fijnkorreligheid van gegevens op identificeerbaarheid bestudeerd. Het
is duidelijk dat een leeftijd in maanden meer identificerend is dan een leeftijd in
jaren. Een techniek wordt gepresenteerd om dit e↵ect expliciet te kwantificeren
in termen van intervalbreedtes. Ten derde is het e↵ect van correlatie tussen nu-
merieke variabelen bestudeerd met als leidend voorbeeld lengte en gewicht, die
positief gecorreleerd zijn. Voor de benadering van het niveau van identificeer-
baarheid wordt een expliciete formule gepresenteerd die gebruik maakt van de
correlatiecoë�ciënt. De formules zijn experimenteel gevalideerd via openbaar
beschikbare gegevens en via niet-openbare gegevens over Nederlandse burgers
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die aan het begin van deze studie zijn verzameld.
Ten slotte geven we preliminaire ideeën voor toepassing van de technieken

in de echte wereld. Deze zijn bedoeld als stof voor discussie in het privacyde-
bat: praktische toepassing is afhankelijk van de competentie en bereidheid van
gegevenshouders en beleidsmakers om op QIDs te letten. Welke waarde van k
als voldoende sterke anonimiteit wordt beschouwd voor bepaalde persoonsge-
gevens, blijft een beleidskwestie.




